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Abstract

The increasing exploitation of renewable energy sources for power generation
introduces a significant instability into the power grid, which has to be addres-
sed with appropriate management strategies. Energy storage is a costly and
inefficient solution. Demand-side control mechanisms can help mitigating the
unbalance between available supply and demand. This includes both direct
and indirect control, depending on the degree of controllability of demand-side
loads. In the latter, congestion on the shared resource is managed using a
price signal, exchanged throughout the power grid and reflecting the resource
availability. This requires the timely exchange of information between energy
consumers and producers, namely power and phase measurements to be used for
the resource pricing. Furthermore, more fine-grained usage data is progressively
becoming available to utilities thanks to the deployment of smart meters. Such
an information is also relevant to facility managers and users, to become aware
of the energy footprint of daily activities and seek a more efficient usage process.

This thesis deals with different applications of high-resolution power usage data
for energy management in smart microgrids. To this end, the first stage included
a measurement campaign in selected households in Italy and Austria. The
resulting dataset, named GREEND, contains more than 1 year consumption
data at 1 Hz. GREEND was released to the research community for open use,
as well as used throughout the thesis.

We elaborate on the design of a data infrastructure capable of collecting data
from heterogeneous data sources in highly dynamic environments. Specifically,
architectural requirements are identified to achieve interoperability at the level of
electrical devices as well as exchanged data. The proposed solution offers a single
interface to query for status changes, which eases the application development
process. In addition, we propose an ontology modeling both static and dynamic
information of household appliances. This allows for the full integration of smart
and non-smart devices, whose behavior can be tracked and recorded in a sort of
datasheet to be exchanged across the network.

The availability of energy usage data allows for the provisioning of value-added
services to both end-users and utilities. To this end, we investigate on the
possibility of an interactive system to timely inform users on their energy usage,
in order to promote an efficient use of local resources. In particular, advices are
returned to consumers based on their usage behavior and building occupance.
Using the GREEND, this solution alone was quantified as potentially yielding
up to 34% of savings.
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However, the effectiveness of demand response programs is greatly affected by
the possibility to automate specific devices. Towards this vision, we introduced
the HEMS market simulator, which allows for training appliance controllers.
Because of the strictly competitive setting, pure market mechanisms do not offer
a complete solution for automatic load management. Accordingly, competition
is limited to a specific trading day, and has the potential effect of yielding service
interruption. To solve this issue, we propose a microgrid power broker that acts
as a retailer of available supply. The broker seeks profit by forecasting the price
of different power provisioning durations.

The three different approaches are independent and give an individual contribu-
tion to the research community. The results provide the basis for future research
in the field of energy management systems for microgrids and smart buildings.
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Zusammenfassung

Die wachsende Nutzung von erneuerbaren Energien stellt das Stromnetz vor
neue Herausforderungen die geeignete Maßnahmen für die stabile Energieversor-
gung im Stromnetz erfordern. Der massive Einsatz von Speichermöglichkeiten
ist hierbei eine vergleichsweise teure und ineffiziente Lösung. Mechanismen
zur Nachfragesteuerung können das Ungleichgewicht zwischen Energieangebot
und -nachfrage verbessern. Dies inkludiert sowohl direkte als auch indirekte
Regelmechanismen, die abhängig von der Steuerbarkeit der Lasten eingesetzt
werden können. In letzterem Fall werden Netzengpässe und Überschüsse durch
einen veränderlichen Strompreis behandelt. Das erfordert den rechtzeitigen
Informationsaustausch zwischen Anbietern und Verbrauchern, konkret Daten zu
Leistungsflüssen und Phasenlage als Grundlage zur Preisbildung. Dazu stehen
den Energieversorgern durch den Einsatz von intelligenten Stromzählern zu-
nehmend genauere Strommessdaten zur Verfügung. Solche Daten sind auch für
das Gebäudemanagement und für Endkunden von Interesse, um den täglichen
Energieverbrauch zu erfassen und auf dieser Grundlage Effizienzverbesserungen
zu planen.

Diese Arbeit befasst sich mit verschiedene Anwendungen von hochauflösenden
Stromverbrauchsdaten für das Energiemanagement in Smart Microgrids. Zu
diesem Zweck wurde in der ersten Phase eine Messkampagne in ausgewählte
Haushalten in Italien und Österreich durchgeführt. Der daraus entstehende
Datensatz, kurz GREEND, enthält mehr als 1 Jahr an detaillierten Verbrauchs-
daten die im Sekundenabstand gemessen wurden. Der GREEND-Datensatz
wurde veröffentlicht und für die Forschungsgemeinschaft freigegeben. Er wurde
ebenfalls durchgehend in dieser Dissertation verwendet.

Diese Arbeit stellt außerdem eine Dateninfrastruktur vor, welche das Zusam-
menführen von Daten aus unterschiedlichen Quellen in dynamischen Umge-
bungen erlaubt. Im Besonderen werden Architekturanforderungen identifiziert
welche die Interoperabilität auf Geräte- und Datenebene ermöglicht. Die vor-
gestellte Lösung bietet eine einheitliche Schnittstelle um Datenänderungen zu
verfolgen, was die Umsetzung in konkrete Anwendungen erleichtert. Zusätzlich
wird ein Ontologiemodell vorgestellt welche statische und dynamische Informati-
on zu Haushaltsgeräten modellieren kann. Dies ermöglicht die volle Integration
von intelligenten und konventionellen Geräten, so dass das Verhalten eines Geräts
allgemein in einer Art elektronisches Datenblatt über das Netz kommuniziert
werden kann.

Die Verfügbarkeit von Energieverbrauchsdaten ermöglicht das Bereitstellen von
Mehrwertdiensten für Endverbraucher und Versorger. Dazu wird die Möglichkeit
eines interaktiven Systems untersucht, welches Verbraucher über ihren Energie-
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verbrauch zeitnah informieren kann um eine effiziente Nutzung von vorhandenen
Ressourcen zu fördern. Konkret werden hier basierend auf dem Verbrauchsver-
halten und der Wohnungsbelegung Vorschläge an den Kunden zurückgegeben.
Unter Verwendung von GREEND konnte für diesen Ansatz ein Einsparungspo-
tential von bis zu 34% ermittelt werden.

Die Effektivität von Nachfragesteuerungsprogrammen hängt jedoch stark von
automatisiert steuerbaren Geräten ab. Zur Umsetzung dieser Vision stellt diese
Arbeit im letzten Teil eine HEMS-Marktsimulation vor, welche das automatische
Trainieren von Gerätesteuerungen ermöglicht.

Da dieser Ansatz auf einem kompetitiven Ansatz beruht liefert er nur bedingt
kooperative Lösung zur Gerätesteuerung. Dementsprechend erfolgt die Optimie-
rung nur jeweils für einen bestimmten Zeitraum was potentiell zu Betriebsunter-
brechungen führen kann. Um dieses Problem zu lösen, wird ein Microgrid Power
Broker vorgeschlagen, welcher als Vertriebsstelle für die verfügbare Energie
agiert. Der Broker versucht dabei den Preis für eine gegebene Leistung über
verschiedene Betriebszeiten vorherzusagen und dementsprechend zu handeln.

Die drei vorgestellten Ansätze sind unabhängig voneinander einsetzbar und
liefern verschiedene Beiträge zum Stand der Forschung. Die Ergebnisse bieten
eine Basis für zukünftige Forschung im Bereich Energiemanagement und in der
intelligenten Gebäudetechnik.
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Abstract

Lo sfruttamento crescente di risorse energetiche a carattere rinnovabile introduce
una considerevole instabilità nella rete elettrica, la quale deve essere risolta
mediante appropriate strategie di gestione. L’accumulo energetico offre una so-
luzione ancora inefficiente e costosa. I meccanismi di controllo lato consumatore
(demand-side) possono mitigare il divario tra domanda ed offerta disponibili. Si
distingue in particolare tra controllo diretto ed indiretto, in base alla possibilità
di controllare direttamente i carichi dell’utenza. In quest’ultimo l’accesso alla
risorsa è gestito tramite un segnale indicante il prezzo energetico, condiviso nella
rete in modo da riflettere la disponibilità energetica. L’efficace calcolo del prezzo
energetico richiede quindi un continuo scambio di informazioni tra consumatori
e produttori, in termini di misure di potenza e fase. Inoltre l’installazione di
contatori digitali rende sempre più disponibili dati ad alta frequenza. Tale
informazione è utile a utenti e responsabili di strutture per divenire consapevoli
del costo di attività quotidiane, e tentare quindi un utilizzo più efficiente.

Questa tesi concerne diverse applicazioni di dati di potenza ad alta risoluzione
per la gestione energetica di smart microgrids. A tal fine la prima parte include
una campagna di misura in abitazioni selezionate in Italia ed Austria. Il dataset
risultante, chiamato GREEND, contiene più di 1 anno di dati di consumo ad 1
Hz. Il GREEND è stato rilasciato pubblicamente alla comunità di ricerca ed
utilizzato all’interno di questa tesi.

Al fine di poter raccogliere dati da fonti eterogenee (diversi standard dati e
di comunicazione) è stata progettata una infrastruttura dati. In particolare,
requisiti architetturali sono stati identificati per poter raggiungere interopera-
bilità a livello di dispositivi elettrici e dati scambiati. La soluzione proposta
offre una interfaccia singola per poter interrogare cambiamenti di stato. Ciò
semplifica il processo di sviluppo di applicazioni. In aggiunta proponiamo una
ontologia modellante informazioni statiche e dinamiche degli elettrodomestici.
Ciò permette l’integrazione completa di elettrodomestici smart e comuni, il cui
comportamento può essere monitorato e memorizzato in un profilo condivisibile
nella rete.

La disponibilità di dati energetici permette la fornitura di servizi a valore
aggiunto a utenti finali e fornitori di servizio. A tal fine, investighiamo la
possibilità di sistemi interattivi di informare prontamente gli utenti sul loro
utilizzo energetico, in modo da promuovere un utilizzo efficiente delle risorse
locali. In particolare l’occupazione dell’edificio e il comportamento energetico
vengono considerati per formulare e mostrare suggerimenti su come migliorare le
performance. Usando il GREEND questa soluzione da sola è stata quantificata
portare fino al 34% di risparmio.
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L’efficacia dei programmi di demand response è influenzata dalla possibilità di
automatizzare specifici dispositivi. Verso questa visione abbiamo introdotto il
simulatore di mercato HEMS, che permette la progettazione di controllori per
elettrodomestici. A causa dell’ambiente strettamente competitivo, i meccanismi
di mercato non offrono una soluzione completa alla gestione automatica dei
carichi. La competizione è infatti limitata ad una specifica giornata di negozia-
zione, il che può potenzialmente causare interruzioni di servizio. Per risolvere
tale problema proponiamo un broker che funge da rivenditore della potenza
disponibile. Il broker ricerca profitto stimando il prezzo per forniture di servizio
aventi diversa durata.

I tre diversi approcci forniscono un contributo individuale alla comunità di
ricerca. I risultati forniscono la base per ricerca futura nel campo dei sistemi di
gestione energetica per edifici intelligenti e microgrids.
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CHAPTER

1
Introduction

”Simplicity is the ultimate sophistication” – Leonardo Da Vinci

”Μέγα βιβλίον, μέγα κακόν - Mega bibl̀ıon, mega kakòn” – Kalĺımachos

1.1 Motivation

Over the last decades, the growing concern towards global warming has raised
massive investments on sustainability research. Fossil fuels still account for the
highest share of utilized source, with consequences on pollution and climate
change. According to the world wide fund for nature (WWF) fossil sources still
account worldwide for more than 81% of sources1. This is similarly indicated by
the international energy agency (IEA) in Fig. 1.1, which shows the proportion of
energy supply in millions of tons of oil equivalent (Mtoe) for the period 1971 to
2013. Coal is the oldest and most polluting of those, being heavily responsible
for higher emmisions of greenhouse gases and other detrimental substances
(e.g., fine dusts, mercury, cadmium) than for instance natural gas. For instance,
emissions of CO2 from coal power plants are 30% higher than oil-powered ones,
and 70% higher than those powered by natural gas. The Legambiente remarked
in its dossier2 that in Italy the 12 Coal-based power plants producing only
13% of supply are responsible for 30% of CO2 of all Italian thermo-electric
power plants. This translates into 36 Mt (millions of tons) of CO2, out of the
total 122 Mt. In Italy, installed coal-powered production amounts to 121 762
MW, against a demand peak of 59 126 MW. In any perspective, coal is far
from being a sustainable solution, given also that Italy imports practically
its entire demand of coal. Moreover, the market is often being compromised
by statal incentives towards fossil sources. While nations have recognized the

1http://stopcarbone.wwf.it
2http://www.legambiente.it/sites/default/files/docs/dossier carboneritornoalpassato.pdf
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1.1 Motivation 1 Introduction

Figure 1.1: Worldwide total primary energy supply in Mtoe [OEC15]

problem and set a limit to their emissions, such as in the European 2020 20%
reduction plan [Eur10] and the Kyoto protocol [Uni88], technology is still far
from providing a sustainable solution to energy production, distribution and
usage. The availability of fossil sources is destined to shrink and a diversification
of sources is thus essential for the future. Fig. 1.2 shows the proportion of
different energy sources for electricity production in the period 1971 to 2013.
Energy production and its related effects are constantly rising, especially in
developing countries, seen the increasing standards of living. For a community,
access to electricity is the propeller of economic growth and quality of life. In
its world energy outlook [IEA15], the IEA reports 1.2 billion people without
access to electricity, mostly in rural areas of sub-Saharan Africa (635 millions)

2
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Figure 1.2: Electricity generation by fuel in TWh [OEC15]

and developing Asia (526 millions). These communities will soon claim their
right for a decent life standard. Given the high installation and mantainance
costs, the old energy supply model based on big power plants and a ubiquitous
power distribution network provides an infeasible solution to such a demand.
Power electronics will play a crucial role towards cleaner energy generation and
more efficient storage and utilization, with an estimated saving potential of
20% [Bos10]. On the other hand, information and communication technologies
have a core role in the transition towards a smarter power grid. The availability
of an information channel connecting utilities, distribution network providers
and customers can accordingly provide a coordination means for a greater
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efficiency. This is especially important with the increased complexity introduced
by the use of renewable energy sources. Being dependent on weather conditions,
generation becomes highly stochastic and yields unbalance between supply and
demand.

Microgrids represent a bottom-up approach in coping with such a complexity,
by dividing the grid in sub-systems that are easier to manage. This creates
networks of small generators and consumers, such as households, industry
sites and villages. Accordingly, energy can be generated locally (e.g., using
a photovoltaic system) and its usage can be reduced or shifted in order to
optimize use of local resources [Pal11]. Microgrids might operate in complete
autonomy in what is called island mode, which also allows for better detecting
and isolating system faults. As such, microgrids provide a cost-effective solution
to the problem of electrification in developing countries.

However, the transition to a more sustainable energy system takes place at
various levels, including the consumer side. Demand response allows for sharing
with end users the uncertainty resulting from the employment of renewable
sources. Accordingly, a price signal is shared to reflect the balance between
available supply and current demand. This is made possible by the increased
temporal measurement resolution provided by modern digital meters. On one
hand this information can be used to improve billing and better act in the
wholesale energy market. On the other hand the information can be used
by users to improve energy usage. Accordingly, demand response exploits
the flexibility offered by certain devices to react to grid instability. A typical
example is the one of dwellings, which account for a significant share of the
overall energy usage, being quantified as the 23% by [Mcm02] in 2010. Such a
consumption is expected to grow further, given the increase of 10.8% registered
for the EU25 in the period 1999 to 2004 [Ber07]. In particular, the study
shown in [Car13], shows the main contributors to residential consumption in
the US. Using national average penetration rates, 12 appliance types are shown
responsible for 80% consumption. In particular, white goods such as the fridge,
the dishwasher and the washing machine demand a higher amount of energy than
brown goods (e.g., TV). A possibility is to better inform users of the footprint
of their daily life activities, by embedding measurement units in electrical
devices. Raised awareness can lead to more informed decisions and increased
efficiency. A relevant aspect is thus the investigation of feedback means to aid
decision making. However, demand response via feedback mechanisms relies
on the timely reaction of human decision makers. More automatic systems
are necessary to assist the scheduling of electrical loads based on the current
and forecasted availability of energy. The solution should be decentralised in
the sense that a mediator should not be necessary for the coordination of the
whole grid. This is demanded by another requirement, that of scalability, as
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the system should be working at both household and microgrid scale, to the
whole power grid.

Multi agent systems offer a straight solution to those requirements of decen-
tralization and automatism [Woo09]. The main concern is thus on the selection
of appropriate coordination mechanisms, as well as on techniques for modeling
users’ preferences and power generation. This thesis addresses the problem of
microgrid energy management by undertaking the design and use of energy
management systems. The main objective is to provide means for an increased
efficiency and reliability in presence of renewable energy sources. As we will
see, this poses several challenges that need further research.

1.2 Electrical energy management

An Energy Management System (EMS) is a system of computing components
that can be employed for optimizing energy resources in building environments.
Typically, an EMS should be able to collect consumption information of devices,
as well as monitoring local production from renewable energy sources such as
photovoltaics (Fig. 1.3). Typical building blocks of energy management systems
are:

• Smart meters offer a means to collect high resolution energy data. Such a
higher resolution opens to dynamic prices, which can better reflect the
available energy to keep it balanced. This information can be used by both
facility managers and consumers, who can can get a better understanding
of usage across activities. Utilities can use demand data to improve billing,
as well as to monitor the grid and better plan future investements.

• Smart appliances embed a computing unit and a network interface to
interact with users and other appliances. Smart appliances are aware of
consumed power based on local measurement units or built-in profiles
[Elm12]. To interoperate with other devices in the network, smart devices
need to provide a machine-readable description of their features and
properties. Applications can thus be realized controlling distributed
digital sensors and actuators, which can dynamically join and leave the
network.

• Legacy electrical devices Energy management systems need to consider the
presence of non-smart devices. A possible solution is to connect sensing
units to each loads to track their consumption. So-called smart outlets and
smart plugs form a network of distributed sensing nodes, which normally
provide also the possibility to remotely switch them (on/off). Since current
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market solutions do not support identification of connected loads, any
processing of consumption data has to be done at application level.

• A Gateway is used in automation systems to supervise the whole system
and bridge the local network to the wide-area network. As such, the
gateway connects the private network and the internet, therefore playing a
crucial role in ensuring security and privacy. Moreover, the gateway is also
the point where interconnection and interoperation between heterogeneous
technologies takes place. Sub-networks using specific technologies, such
as automation fieldbuses and Zigbee networks, can be managed from the
gateway in order to provide a uniform interface to access resources.

• Interfaces such as mobile terminals or specific displays are commonly
employed to control the whole system.

Figure 1.3: A smart building [Lak13]

1.3 Research questions

In the context of smart microgrids and buildings, this thesis undertakes three
different paths, in particular:

1. How can device and data interoperability be achieved towards
the vision of a microgrid energy market?
This includes the identification of technologies to annotate device capabil-
ities and exchanged data, as well as approaches for the integratation of
those devices detected through load disaggregation.

6
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2. How can energy awareness be effectively boosted towards a
more conscious use of energy resources?
This includes the identification of possible conservation strategies to be
applied in the experiment regions. An estimation or real measurements of
yielded savings should be provided to support their effectiveness.

3. How can the design of appliance controllers be automated to
optimize the use of local energy resources?
This includes the design of appliance controllers and the selection of
appropriate market mechanisms.

1.4 Outline

The thesis started with Chapter 1 which introduced the topic of energy man-
agement in buildings and microgrids, as well as the challenges undertaken.
Chapter 2 describes the background by overviewing existing technologies and
previous work presented in the direction of this dissertation. This includes
platforms for the collection and processing of energy data, as well as approaches
towards the achievement of architectural interoperability. At a wider scale,
interoperability can enable multiple self-* properties, according to the vision of
autonomic computing. The availability of energy data opens to several other
applications, such as detection and profiling of electrical loads. While this
information is useful to all stakeholders: utilities, distribution network providers
and consumers, this raises privacy concerns, which demand suitable solutions.
On the other hand, this information should be exploitable locally to build
models of demand and supply, which autonomous agents can use to minimize
human intervention. We thus conclude the chapter with an overview of existing
market mechanisms which can be employed for power trading.
Chapter 3 reports in detail of the measurement campaign carried out in Aus-
tria and Italy, which eventually yielded the GREEND dataset.
Chapter 4 documents our work towards architectural interoperability for build-
ing energy management systems. We introduce a multi-layer architecture, using
both networked devices and the use of load disaggregation to collect energy
information. Full integration of electrical devices is achieved by annotating in-
formation according to a shared semantic model. This allows for the application
of logic queries on annotated data. Chapter 5 analyzes the collected energy
data to identify points for intervention. It introduces the Mjölnir web-based
dashboard, which is a framework to process aggregated and disaggregated (i.e.,
appliance-level) consumption data. An advisor widget is designed to provide
tailored feedback to energy consumers. The saving potential of the widget are
finally estimated to up to 34%. Acceptance of the widget is finally evaluated in
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a user test.
Chapter 6 documents our work towards automatic load management. We
design a tool for the automatic design of controllers for energy prosumers.
We show that because of the selected coordination mechanism, the approach
might still lead to suboptimal solutions. A power broker is then introduced for
pricing different power provisioning agreements. Agreements act as multiple
provisioning services, constrained to different levels of quality of service.
Finally, Chapter 7 summarizes the contribution of this work and lists aspects
deserving further investigation for the future.
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CHAPTER

2
Background and related
work

”Verba volant, scripta manent”

– Caius Titus

The Smart Grid is a cyber-physical system whose smartness relies on the
possibility to efficiently connect consumers and producers through an information
channel. As such, its success heavily depends on the possibility to collect
measurement data from distributed heterogeneous sources and to timely react
to status changes. Demand side management promises a more efficient power
grid through a better coordination of electrical loads. Accordingly, [Pal11]
distinguishes in:

• energy efficiency and conservation, in which users are provided with an
energy feedback to increase their awareness [Mon13c];

• time-of-use tariffs, in which the retail energy price is predefined in hourly
or half-hourly intervals to meet expected peak periods;

• demand response, which includes direct control of certain customer pro-
cesses by utilities, as well as voluntary response to emergency signals and
price changes (i.e., indirect control). The latter can be implemented using
more dynamic pricing schemes, such as critical peak pricing and real-time
pricing schemes, which better reflect the wholesale market prices into the
retail prices.

In this chapter, we provide a comprehensive literature work on energy monitoring
systems (Sect. 2.1), namely looking at available datasets (Sect. 2.2), interoper-
ability issues (Sect. 2.3), data management and analysis approaches (Sect. 2.4),
as well as techniques to raise users’ awareness (Sect. 2.5) and automate energy
management (Sect. 2.6).

9



2.1 Metering systems for energy management 2 Background and related work

2.1 Metering systems for energy management

Building energy management is achieved through the collection of energy con-
sumption and production data. A digital meter is an electronic device recording
energy usage at regular intervals, to be processed for improving decision making
of both humans and autonomous controllers. Before going to further detail, it
is important to firstly recall the physical quantities a meter deals with: i) the
voltage espressed in Volts, ii) the current in Amperes (A) and iii) the phase shift
between them φui. To handle those measures, the voltage can be lowered with a
voltage divider and simply fed into an Analog-to-Digital Converter (ADC). The
current (i.e., quantity of charge per second) can be measured using a Hall-effect
sensor or a current transformer, which base their functioning on the magnetic
field generated on the conducting wire. The phase shift φvi = φv − φi is the time
shift between the measured voltage and current and can be estimated through
numerical methods. From these parameters we can distinguish in three different
quantities: the active power in Watts (W), the reactive power expressed in VAR
and the apparent power in Volt-Amperes (VA) (see Fig. 2.1):

P = VRMS ⋅ IRMS ⋅ cos(φvi) (active power)

Q = VRMS ⋅ IRMS ⋅ sin(φvi) (reactive power)

S = VRMS ⋅ IRMS (apparent power)

The root mean square (RMS) of a time-varying function, such as voltage and

Knowledge

monitor execute

analyze plan

Sensors Actuators

Managed element

φ

W

VAR
VA

Figure 2.1: Relationship between power quantities

current, can be computed by dividing the peak value by the the crest factor.
The crest factor is a signal-specific property. For instance, for a sinusoidal signal
it is

√
2. Data collection can be carried out directly accessing digital meters

or employing networks of distributed measurement units. In this dissertation
we focus on the second approach, for which various solutions are available in
the market (See Table 2.1). The main aspect to consider is the kind of features
measurable and the highest sampling frequency achievable. According to the
Nyquist-Shannon sampling theorem, in order to reconstruct a sampled signal
and avoid aliasing, the sampling frequency should be not less than twice the
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highest frequency (i.e., fs > 2fmax). Another aspect to remark from Table 2.1
is the availability of a Software Development Kit (SDK) or a documented
Application Program Interface (API), as most of commercial solutions provide
closed-source software applications to manage the system. Most of those employ
a 2.4 GHz Zigbee connection, while only one, to the best of our knowledge, uses
Powerline Communication (PLC) technology. In [D’A14] available solutions are
discussed and network constraints are derived for a building energy management
system.

Table 2.1: Commercially available measurement systems [D’A14]

Manufacturer Comm.tech. Sampling freq. SDK/API SW Price/SP

Pikkerton
Zigbee

some secs yes no 100 €
2.4 GHz

Plugwise
Zigbee

1 h no yes 30 €
2.4 GHz

4-noks
Zigbee

- yes no 40 €
2.4 GHz

ThinkEco Modlet
Zigbee

- yes yes 100 €
2.4 GHz

FlexGrid
Zigbee

- no yes 85 €
2.4 GHz

Wireless

CurrentCost Proprietary 1 m no yes 18 €
433 MHz

Powerline

SLSEnergy Proprietary 30 s no yes 38 €
115-132 kHz

2.2 Energy-usage datasets

To evaluate solutions working for real scenarios, research on energy and sustain-
ability relies on publically available datasets. Table 2.2 classifies energy-usage
datasets using as classification attributes the sampling frequency and the char-
acteristics of the signal being measured, such as active power (P), reactive
power (Q), apparent power (S), energy (E), frequency (f), phase angle (Φ),
voltage (V) and current (I). Collected data reflects the differences required
on target applications. As visible, certain datasets (e.g., REDD [Kol11] and
BLUED [And12]) only monitor a small number of households at a high sam-
pling frequency. In load disaggregation, more representative features can be
captured when sampling at a higher frequency [Arm13]. Another aspect is the
location. Many datasets were collected in the USA, where voltage is 120V rather

11
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the 230V commonly used in Europe. The setting in which collection takes
place greatly affects behavior and should therefore be as much representative
as possible. The appliance tracks collected in TraceBase [Rei12] and ACS-F1
[Gis13] do not provide any relationship to the consumption scenario, which
makes any behavioral analysis impossible. Besides, location determines weather
and climate. Another aspect is the type and number of monitored devices
and households. Statistical analyses are only possible with higher number of
households, such as in HES and OCTES. Moreover, seasonal behaviors can only
be captured by long term campaigns. Also, certain datasets monitor households
over shifted time windows, which makes a comparison impossible.

12
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Table 2.2: Existing datasets for energy consumption in households
Dataset Location Duration #Houses #Sensors (per house) Features Resolution

ACS-F1 [Gis13] Switzerland 1 hour session (2
sessions)

N/A 100 devices in total (10
types)

I, V, Q, f, Φ 10 secs

AMPds [Mak13] Greater Vancou-
ver

1 year 1 19 I, V, pf, F, P, Q, S 1 min

BLUED [And12] Pittsburg, PA 8 days 1 Aggregated I, V, switch events 12 kHz

GREEND Austria, Italy 1 year 8 9 P 1 Hz

HES UK 1 month (255
houses) - 1 year
(26 houses)

251 13-51 P 2 min

iAWE [Bat13] India 73 days 1 33 sensors (10 appli-
ance level)

V, I, f, P, S, E, Φ 1 Hz

IHEPCDS1 France 4 years 1 3 circuits I, V, P, Q 1 min

OCTES2 Finland, Ice-
land, Scotland

4-13 months 33 Aggregated P, Energy price 7 secs

REDD [Kol11] Boston, MA 3 - 19 days 6 9-24 Aggregate: V, P;
Sub-metered: P

15 kHz (aggr.), 3
sec (sub)

Sample dataset3 Austin, TX 7 days 10 12 S 1 min

Smart* [Bar12] Western Mas-
sachussets

3 months 1 Sub-metered
+2 (Aggregated
+ Sub-metered)

25 circuits, 29 appli-
ance monitors

P, S (circuits), P
(sub-metered)

1 Hz

Tracebase [Rei12] Germany N/A 15 158 devices in total (43
types)

P 1-10 sec

UK-DALE [Kel14a] UK 499 days 4 5 (house 3) - 53 (house
1)

Aggregated P, Sub
P, switch-status

16 kHz (aggr.), 6
sec (sub.)

1 http://tinyurl.com/IHEPCDS
2 http://octes.oamk.fi/final/
3 http://www.pecanstreet.org/projects/consortium/
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2.3 Device and data interoperability

The interoperability problem involves the whole smart grid system, which is
lacking widely accepted standards [Gun11]. An effective coordination of energy
consumers through demand response demands coping with the heterogeneity
of such networked components. In particular, the system must deal with dis-
tributed resources, built by different manufacturers using different technologies.
For instance, a building energy management system can include smart appli-
ances [Elm12] using different communication protocols and data formats, as
well as devices with no connectivity at all.

2.3.1 Distributed computing paradigms

In distributed computing communication between distributed components can be
commonly distinguished in Remote Procedure Call (RPC) and Representational
State Transfer (REST). Remote procedure call enables processes to call proce-
dures located on different address spaces (e.g., remote servers). This is possible
thanks to a stub component that converts and serializes requests (marshalling)
in order to hide network mechanisms and structure to application developers.
SOAP-based webservices follow this approach. In RPC services the sender
perform a request along with parameters specified as payload. The server
receives the request and performs the procedure call using the given parameters.
This means that the service client sends part of its state to the server. The Java
Remote Method Invocation (RMI) implements this approach for object-oriented
environments. On the contrary, REST services are collections of representations
of resources, which are addressable using unique identifiers (i.e., URI). A client
can request resources to a server using a standardized interface (e.g., HTTP).

2.3.2 Device modeling and discovery

In service-oriented architectures (SOA), component-level interoperability and
configurability can be achieved as a composition of loosely-coupled computing
components. Specifically, this takes place by separating the component inter-
face from implemented functionalities. Interoperability is firstly achieved at
the message level by relying on standardized data formats such as XML and
JSON. Binary variants have also been proposed to further reduce the overhead
introduced for parsing those formats on memory-constrained embedded devices.
For instance, the Efficient XML Interchange (EXI)1 was shown providing the

1http://www.w3.org/TR/exi/
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highest compression and efficiency to process XML messages [Sak09]. For JSON,
its counterpart is the binary JSON format2.

This allows smart devices to provide a machine-readable description of their
features, that can be made available to the other devices across the system.
Services are described in terms of their I/O interface: i) possible operations, ii)
constraints on data given and iii) communication protocol. As indicated, this
allows for the encapsulation of the service complexity and simpler management
mechanisms. Applications can be built as composition of those distributed
services, using i) service orchestration or ii) service choreography.

An orchestrator controls the dependencies between each specific service by
means of a process workflow. The Business Process Execution Language for
Web Services (BPEL4WS) is a standard for XML/SOAP services. On the
contrary, in a choreography the global workflow is split down to local rules to
be implemented directly by the individual services. While coordination can be
directly hard-coded in the service definition, this approach does not scale to
larger networks. The Web Services Choreography Interface (WSCIspec) and the
Web Services Choreography Description Language (WS-CDL) are standardised
choreography definition languages that can be used to automatically generate
dependency rules given the overall business process.

To enable resource sharing, service-oriented architectures provide the means
for resource naming [Tan06]. [Dar09] distinguishes in three generations of
naming systems, i) name services (e.g., DNS) which resolve names to entities and
possibly basic attributes, ii) directory services (e.g., LDAP) which also provide
more complex attribute-based queries so as to retrieve entities satisfying certain
attributes, and iii) service discovery systems. The first two can work fine in stable
environments, such as wired networks, as they require human configuration and
management. Contrarily, service discovery can reduce human intervation by
dynamically detecting nodes joining or leaving the network. To a certain extent,
this provides self-configuration and self-healing properties [Kep03]. In particular,
discovery can be implemented using broadcast and multicast (e.g., ARP, UPnP),
using shared service registries (e.g., DNS, LDAP, UDDI) or exploiting logical
overlays such as with distributed hash tables (e.g., Chord, Kademlia) [Dar09].

It is important to remark that varius communication standards can be used
for building automation, opearing with powerline (e.g., X103, HomePlug4 and

2http://bjson.org/
3http://www.x10.com
4http://www.homeplug.org
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LonWorks5) or wireless (e.g., ZigBee6, Z-Wave7, Bluetooth8) communication.
However, a clear transition to IP-based technologies is ongoing [Vil13]. For
instance, IETF Zeroconf9 and the service location protocol (SLP)10 are service
discovery mechanisms for IP networks. Component-oriented interoperability
has been advocated in various middlewares such as Jini, Open Services Gateway
initiative (OSGi)11, Home Audio/Video interoperability (HAVi), Universal Plug
and Play (UPnP)12 and Device Profile for Web Services (DPWS)13.

2.3.3 Data modeling

While device description and discovery can be achieved with the use of service-
oriented architectures, an open issue to be discussed is the readability of
exchanged data. To this end, [Hea11], [Pfi11] and [Mon13a] suggest to seman-
tically annotate sensor data using principles from the semantic web and the
linked data initiatives. The core concept is to describe data in terms of their
relationships, by using the Resource Description Framework (RDF) data model.
Thereby, the basic information unit is a ⟨subject, predicate, object⟩ triple. In
this way, data can be related to concepts defined in shared vocabularies, so that
all entities sharing the same definition can interpret the data the same way.

For instance a washing machine could be described in Turtle14 as:

1 @prefix ns: <http:// myrepository.com/houses /12345/ > .

2 @prefix en: <http:// example.com/ontologies/appliances.owl#>

.

3
4 ns:washing -machine en:model "XYZ123456" ;

5 en:manufacturer "Bob Inc." ;

6 en:type en:washing -machine ;

7 en:consumption "800" .

In order to achieve interoperability at this abstraction level, a possibil-
ity is to store the description on a server running on the networked de-
vice. In this way, when accessing the appliance at a specific URI (e.g.,
“http://myrepository.com/houses/12345/washing-machine”) a human-readable

5http://www.echelon.com
6http://www.zigbee.org
7http://www.z-wave.com
8http://www.bluetooth.com
9http://www.zeroconf.org

10https://www.ietf.org/rfc/rfc2608.txt
11https://www.osgi.org
12http://www.upnp.org
13http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
14Terse RDF Triple Language, a RDF serialization format. http://www.w3.org/

TeamSubmission/turtle/
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or a machine-readable representation can be returned. This mechanism relies on
headers15 to retrieve different representations of the same resource. To reduce
latencies due to the resolution of URIs and the retrieval of descriptions, another
possibility is to collect offline all descriptions in a centralised storage, such as a
triple store [Mon13a]. Various technologies have been proposed towards this vi-
sion. The IPv6 over Low power Wireless Personal Area Networks (6LoWPAN)16

aims at bringing IPv6 connectivity to resource-constrained embedded devices.
Similarly, the Constrained Application Protocol (COAP) offers a lightweight ver-
sion to HTTP, by employing UDP along with the CoRE link format (RFC6690)17

to describe resources by their links. In detail, a node can send a POST for
a link to its provided resources to the index “/.well-known/core” mantained
on the selected directory node. This way, any client accessing the index can
discover resources in the subnetwork.

The definition of shared vocabularies is thus central to the interpretation
of exchanged data. Ontologies offer a formal conceptualization of a specific
domain in axiomatic terms. Moreover, they can be integrated and extended
to support larger domains. For instance, an energy management system for
microgrids and buildings might require the definition of:

• Building information includes modeling of the dwelling, such as building
geometry and insulation information [Kof13a].

• Building automation and device description includes service orientation
[Sta12, Pre04] and building automation [Bon08].

• User information and preferences includes living processes in terms of ap-
pliance operation and system settings (e.g., for thermal comfort) [Kof13b].

• Energy management includes modeling of energy generation, management
(cf. [Rei11]) and optimization through rule-based reasoning [Tom10].

• Weather and climate modeling includes modeling of both climate and
weather conditions, as well as weather forecasts [Kof12].

• Measurement units and sensors include sensor modeling [Com12], physical
phenomena [Ras04], measurement units, as well as geographic information.

The main benefit from using such knowledge engineering techniques is the
possibility to built an abstraction over data collected from diverse sources. In
addition, specific tools for retrieval of such data became available. The SPARQL

15http://www.w3.org/TR/cooluris/
16http://tools.ietf.org/wg/6lowpan/
17http://tools.ietf.org/html/rfc6690
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Protocol and RDF Query Language (SPARQL) is a query language that can
handle data modeled using the RDF framework. In detail, SPARQL allows
for the addition, deletion, and modification of data triples [DuC11]. SPARQL
can also be used to perform complex event processing by defining rules and
constraints over data using the SPARQL Inferencing Notation (SPIN). While
SPARQL was designed for static networks, such as the web, data collected in
real environments tend to be highly dynamic and demand for different query
languages able to tackle such a volatily. Various alternatives have been proposed:
C-SPARQL [Bar10], SPARQLstream [Cal10], EP-SPARQL [Ani11], and CQELS
[LP11].

2.4 Meter data management

The higher measurement resolution made available by the progressive rollout
of smart meters allows for data analysis. On one hand this can benefit both
utilities and distribution network providers towards a more efficient network.
On the other hand customers can receive value-added services on top of their
power provisioning plan.

2.4.1 Load disaggregation and detection

Monitoring and integration of energy usage data can take place by either
measuring individual devices with a network of distributed monitoring units or
detecting operating devices from aggregated measurements. Consequently, we
distinguish Intrusive Load Monitoring (ILM) and Non-Intrusive Load Monitoring
(NILM).

ILM requires monitoring each device with a sensing unit, such as a smart
outlet or plug, with higher setup and mantainance costs. Device identification
can either be solved by humans by indicating the type of each connected device,
as well as inferred from collected data. Identifying loads requires modeling the
operation dynamics of electrical devices, which can be either statically provided
or extracted online from measurements [Don13]. For instance, [Par12] uses a
general appliance model of refrigerators.

Non-intrusive load monitoring is a single-meter approach, as it aims at
identifying running loads from the overall power consumption data. The
approach, firstly introduced by Hart in [Har92], recognizes operating devices
according to specific patterns on their power profile. Load disaggregation can be
seen as an optimization problem where given the total power consumption and a
database of known power profiles a composition is found to best best approximate
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the measured overall power [Lia10, Ega13, Suz08]. Disaggregation algorithms
can be distinguished in supervised and unsupervised approaches, depending
on the necessity to use labeled data to train the classifier. In particular,
supervised techniques include Bayesian approaches [Zei12], artificial neural
networks [Sri06] and support vector machines [Lin10]. The main disadvantage is
the need of labeled data during a training phase. This implies greater effort and
development costs. More recent unsupervised load disaggregation algorithms,
such as those based on k-means clustering [Gon11], Factorial Hidden Markov
Model (FHMM), and its variants [Kol12, Zai10, Kim11, Zoh13], promise to
overcome this issue. The effectiveness of existing NILM algorithms strongly
dependends on the employed sampling frequency. Accordingly, higher sampling
frequency can provide more representative characteristics, which results in a
more accurate appliance classification. [Arm13] suggest that approximately 10
different appliances can be detected with a sampling frequency of seconds. In
particular,[Zei12] indicates the following requirements:

• power measurements at 1Hz;

• a minimum acceptable accuracy between 80 and 90%;

• no training should be necessary;

• real-time appliance detection;

• possibility to detect between 20 to 30 appliances;

• should handle various appliance types, such as binary and multi-state
devices, continuous appliances, as well as permanently operating ones
[Zei11].

The design of a load disaggregation component challenges the research commu-
nity with multiple questions, among which:

1. the dependence on the Signal-to-Noise Ratio (SNR) of power measure-
ments;

2. the sensitivity with respect to the sampling frequency;

3. the sensitivity with respect to the given appliance models, which includes:
similarity between different device types, as well as differences between
differently-manufactured ones;

4. the necessity of an appliance dataset for modeling purposes, and the
sensitivity of the resulting models to the completeness of the dataset;
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5. the sensitivity to different usage modalities for the same devices, such as
differences on time and duration of the operation;

6. the computational complexity and hardware costs entailed by the selected
algorithm.

A complexity measure for load disaggregation is further discussed in [Ega15b]
and [Poc15].

2.4.2 Usage profiling

The availability of fine-grained energy usage data allows for mining usage profiles,
which can be used for instance to improve control strategies and feedback.

Lately a few works were proposed to infer occupancy from energy consump-
tion data, as in [Che13, Kle13]. The main concept is to monitor consumption
of user-driven devices to determine presence. In [Che13] threshold values are
computed during inactivity periods, i.e. when only baseline loads such as fridges
are operating. Most commonly, the thresholds are computed during the night
when people are sleeping. This has the disadvantage of assuming inactivity as
unoccupation and does not consider that smart appliances can be automatically
scheduled to run over the night. In [Mon14a] we applied the algorithm on two
months of power measurements (February and March 2014) to build weekdays
and weekend occupancy models. We observed a good agreement between the
estimated probability of occupancy and the habits of residents during the day.
However, as expected the occupancy model shows inactivity during midnight
and 6.30 AM.

Appliance usage mining concerns the extraction of models describing the use
of electrical devices from event logs. This has been achieved through various
techniques, such as association rule mining [Kan12], artificial neural networks
(ANNs) [Ayd02], episode-generating Hidden Markov models (EGH) [Tru13] and
Bayesian networks [Agu11]. In [Mon14a] we showed that the starting probability
for a coffee machine can be easily modeled from a log of starting events (See
Fig. 2.3). A good agreement with the residents activities was noticed, especially
concerning the wake-up patterns which appear delayed in the weekend days.

2.4.3 Privacy aspects

The use of cyber-physical systems raises privacy concerns due to their effects
on the physical world. Specifically, entities operating on user’s behalf might be
manipulated to operate differently.
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(b) Weekend occupancy probability

Figure 2.2: Occupancy model example [Mon14a]
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Figure 2.3: Usage forecasting for a coffee machine [Mon14a]

Also, handling energy information might result in theft or alteration. Ac-
cordingly, the availability of energy usage data indicate time and modality of use
of devices, which can allow for the extraction of usage patterns [Ngu13, Lis10].
This has effects on multiple stakeholders such as utilities, marketing agencies,
press and even criminals [Sko12]. For instance, [Gre12] showed the possibility
of detecting the TV show being watched based on power consumption. Load
hiding techniques emerged as a solution to obfuscate the overall power demand
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in order to ensure privacy. The concept is to operate controllable batteries or
energy-intensive loads (e.g., water boilers) to reshape the measurable overall
power demand of the building. Therefore, we distinguish between Battery-based
Load Hiding (BLH) and Load-based Load Hiding (LLH) [Ega14].

2.5 Energy awareness

Energy awareness denotes the ability to understand the monetary, social and
ecological impact behind the operation of electrical devices. While energy
invoices return consumption information, they are normally sent out with
significant delay from the actual energy use. This way, received consumption
information is a too coarse-grained and late feedback to have any effect on
the consumer’s decision making. Prepaid billing is a possible way to increase
the feedback resolution, and it was shown leading to average savings of 11%
in UK, regardless of disconnections from the grid [Ozo13]. Greater efficiency
can generally be achieved by i) replacing devices with more efficient ones, ii)
improving the building efficiency, and iii) optimizing energy usage. To spot
energy hogs, a possibility is to conduct an audit of energy usage, by means of
surveys and interviews with facility managers or end users. However, smart
meter data is going to provide higher resolution data, therefore offering the
means for large scale automated energy audits. For instance, [Bec13] showed
traces from more than 3000 households being used to extract specific customers’
properties.

In demand response programmes, dynamic pricing schemes are used to
incentivize load operation when the demand is lower. The effectiveness of
this mechanism depends greatly on the possibility to timely inform users on
their energy usage, in order to promote a better exploitation of local resources.
Ambient interfaces, such as the power-aware cord [Gus05], are often employed
as an unobtrusive feedback means. Another aspect is the selection of tariff
plans that best suit with the usage behavior, as in the AgentSwitch [Ram13].
An evaluation on 10 users carried out for 3 months showed the system being
effective in finding cheaper tariffs for most users [Fis13].

[Dar06] classifies feedback in two categories:

• indirect, when it provides consumption information after it occurred;

• direct, when the feedback concerns the amount of energy in use

Darby shows also that real-time consumption information can effectively raise
user awareness and lead to up to 15% usage reduction. Indirect information is
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instead necessary to enable learning mechanisms towards a long-term change.
Similarly, [Bon12] identify antecedent and consequent strategies. Antecedent
strategies aim at preventing certain behaviors, for instance using goal-setting
and advices, while consequent strategies concern direct and indirect feedback,
which also includes monetary and social rewarding. However, studies have also
shown that in spite of awareness, the effectiveness of these systems in making
people responsible depends on their sensitivity and motivation [Str11]. The
analysis in [EM10] analyzes 36 studies carried out between 1995 and 2010 to
show that consumption information at device level can lead to the highest energy
savings (see Fig. 2.4). Most effective feedback mechanisms were estimated

Indirect Feedback Direct Feedback
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12%
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Figure 2.4: Effectiveness of feedback [EM10, CA13]

leading to around 20% savings [CA13], by exploiting a user model for offering
tailored services, such as advices.

2.6 Autonomous systems

The smart grid is a system of systems, dealing with decentralised resources
situated in highly dynamic environments. This comes with increased complexity
in management and mantainance. A solution is to devolve a certain level of
autonomy in order to reduce human intervention and minimize costs and risks, as
well as increase security and availability. Autonomy is in fact present in nature.
Typical examples are certain chemical processes, animal swarms and neural
networks. In so called self-organizing systems, an overall order or coordination
emerges from the local interaction of smaller components, without any external
control [Ash47]. Being fully decentralized, these systems benefit from multiple
properties, for example robustness to single-point failures, recoverability to
damages and perturbations, scalability and adaptability.
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2.6.1 Organic and autonomic computing

Biologically-inspired approaches, such as IBM’s autonomic computing [Kep03]
and organic computing [MS04], intend to tackle such a complexity by imitating
natural processes of adaptation to endogenous and exogenous change. For
instance, autonomic computing derives its principle from the autonomous
nervous system, which uses multi-level feedback loops to react to stimuli while
seeking higher-level objectives [Bru09]. Awareness of the monitored environment
is achieved by periodically collecting sensor data. Self-awareness is achieved to
adapt the controller’s behavior according to the availability of internal resources
and information.

A self-managing system exhibits one or more of so called self-* properties
[Dar09]:

• Self-configuration: the system is able to adjust its internal parameters
and behavior to adapt to dynamic environment changes. This property
allows for continuous adaptation to unpredictable conditions, which is the
case in stochastic environments. System administrators can thus specify
high level policies or objectives without having to worry about specific
actions undertaken by the system.

• Self-optimization: the system is able to optimize its operation in order
to meet predefined goals while adapting to changes in available resources.
The system can thus strive for the best result given its available resources
and goals.

• Self-healing: the system is able to detect failures in its components and
repair them in order to maximize its availability.

• Self-protection: the system is able to identify and prevent malicious
accesses in order to ensure integrity, privacy and security.

This is a typical ability of living organisms, as they are able to adapt to
different habitats by regulating the activity of internal organs, in order to
maintain certain vital parameters and ensure the organism’s survival. Beside
these four core properties also called self-chop properties, researchers proposed
further characteristics that autonomous systems should endow (Table 2.3).
In autonomic computing, a controller is implemented as a loop of four tasks:
monitoring, analyzing, planning and action execution, which result in the thus
called MAPE-k architecture (Fig. 2.5). A shared knowledge base is used to
both infer context information from heterogeneous sources and store system
policies, which guide the planning process.
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Table 2.3: Self-* properties [Pos09]

Self-* property Description

Self-management System manages itself without external intervention
(Self-*)

Self-description System can be understood by humans and other systems
without further explanation

Self-configuration System components automatically adapt to achieve high-
level goals

Self-interest System aims at pursuing its own goals

Self-monitoring The system can retrieve information of its components
and global status

Self-awareness System knows its internal components and resources

Self-organisation The system is formed via the the decentralised assembly
of self-contained components and its structure is driven
by certain models

Self-creation System’s members participate at the creation of the
system according to social models

Self-optimisation System monitors itself to improve its performance or
efficiency

Self-protection System detects and defend itself against malicious at-
tacks

Self-healing System detects and repairs hardware and software fail-
ures

Self-learning System uses learning techniques to improve its perfor-
mance

Self-regulation System mantains a certain parameter

Self-evolution System shows an emergent behaviour that arises from
local interactions between its components

Knowledge

monitor execute

analyze plan

Sensors Actuators

Managed element

φ

W

VAR
VA

Figure 2.5: The MAPE-k architecture [Kep03]
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2.6.2 Designing self-organizing systems

In spite of the advantages provided by self-organizing systems, addressing the
design through a classic top-down approach is often not possible, because
global properties emerge from bottom-up processes. A way to overcome this
is to observe natural self-organizing systems to acquire insights that can be
transferred to the technical domain [Flo08]. Specific examples are the ant colony
optimization for solving the traveling-salesman problem [Dor96], the stigmergic
pheromone laying behavior of ants being used for replica distribution [Sob13],
as well as the firefly clock synchronization algorithm [Buc88].

However, imitating natural processes can not always provide solutions to
technical problems. As also identified by [Feh13], a more general approach is
to follow the process that led to the emergence of a certain pattern in natural
systems: evolution. Evolutionary algorithms work on a pool of candidates, each
described in terms of a genotype encoding a specific behavior [Eib03]. Each
candidate of the population is a different solution to the targeted optimization
problem. A fitness measure is used to assess the quality of candidates and
rank them. The evolution is actuated by selecting best candidates for further
generations, by applying elitarism, mutation and recombination operators. The
main advantage is their universality, as they can be applied to a very wide
set of problems and candidate representations. No problem-specific knowledge
is necessary for the candidates, except for the fitness function evaluating the
task outcome. Entire fields of research, such as evolutionary robotics [Nol00],
base their functioning on artificial evolution. As indicated by [Tri11], the four
necessary elements for the evolvability of robot controllers are: the ecology (i.e.,
the environment model), the sensory-motor system, the genotype-to-phenotype
mapping, and the fitness function.

2.6.3 Artificial neural network controllers

An Artificial Neural Network (ANN) is a network consisting in nodes, called
neurons, connected by weighted links called synapses. Synapses are used to
propagate signals. In particular, we commonly distinguish in an input and
an output layer of neurons, respectively receiving and providing signals from
the environment. Internal neurons who are not directly connected to the
environment constitute the hidden layers.

In its simplest model proposed by [McC43], the output of a neuron yi is
a sum function Φ of all incoming signals xj, each weighted according to the
connection strength wij. This translates into yi = Φ(∑N

j wijxj). An activation
function θi is also included in the neuron function. Typical activation functions
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are:

Φ(x) = kx (linear function)

Φ(x) =
⎧⎪⎪⎨⎪⎪⎩

1, if x > θ
0, otherwise

(step function)

Φ(x) = 1

1 + e−kx
(logistic function)

Φ(x) = tanh(x) = 2

1 + e−2x
(TanH function)

Φ(x) =max(0, x) (rectifier function)

Φ(x) = exi

∑j e
xj

(softmax function)

indicating the linear function, the step function, the logistic or sigmoid function,
the hyperbolic tangent, the ramp function and the softmax. The linear function
does not change the neuron output and is usually used for regression problems.
On the contrary, the softmax is commonly employed in the output layer for
classification problems. The softmax performs a sort of normalization over
the output layer, consequently providing the probability associated to each
class. The sigmoid and the hyperbolic tangent are a very common choice
for feedforward neural networks, with the latter outputting values in [−1,1].
However, latest research in deep architectures (i.e., with more than 3 hidden
layers) tend to employ the rectified linear unit (ReLU) as the activation function
of choice for hidden layers. The improved training results can be partially due
to the linear and non-saturating nature of the function [Glo11]. Depending
on the direction of propagation of signals, we can distinguish in feedforward
and recurrent architectures. The simpler feedforward networks only allow for
the learning of input-output reactive functions. On the contrary, recurrent
architectures allow the existence of loops (i.e., connections from later layers to
previous ones or from the same layer), thus creating bidirectional propagation
of information. Having a much more complex temporal dynamics, the learning
of those networks is also more complex [Pas13]. However, a Recurrent Neural
Network (RNN) with sigmoidal activation function was shown in [Sie91] being
Turing complete. In particular, RNNs can retain an internal state or context,
which makes them especially effective in processing sequential input [Lip15].

Learning appropriate input-output mappings takes place by adjusting the
weights on the synapses. This can be automated by continuously updating the
weights while a sample set of patterns is presented to the network, such as in
the backpropagation algorithm.

27



2.6 Autonomous systems 2 Background and related work

2.6.4 Neuroevolution

Evolutionary algorithms are often used in evolutionary robotics to learn artificial-
neural networks. The synaptic weights are directly encoded as the genotype
for each candidate and progressively adjusted according to the application of
mutation and recombination operators. The main advantage of evolutionary
algorithms (EA) over other supervised learning methodologies, such as back-
propagation, is the possibility to train a network in absence of a training set.
Accordingly, EAs work on a pool of candidates, each described in terms of
a genotype encoding a specific behavior [Eib03]. The population is initially
filled with random candidates. Each candidate represents a different solution to
an optimization problem. By running each candidate in the population, it is
possible to compute a fitness representing its quality for solving the problem.
Elite candidates are those having the highest fitness and can be kept for further
generations. To ensure diversity, the next generation also has space for some ran-
domly selected candidates. To possibly find new and better solutions, mutation
is applied to the selected candidates. This takes place by randomly modifying
the agent’s genotype. In addition, recombination is used as a reproduction
mechanism which combines pairs of candidate solutions into a set of offspring
candidates.

There are several reasons to prefer ANNs over other representations [Nol00]:

• they act as non-linear function approximators that can deal with both
discrete and continuous signals to interact with the environment;

• they are robust to noise, as oscillations in the input signals do not drasti-
cally affect the network behavior;

• they offer a smooth search space, as gradual changes to their structure
should correspond to gradual changes in behavior;

• evolutionary algorithms can be applied at different abstraction levels, such
as the synaptic weights or the coordination of multiple networks

• they represent a metaphor for biological learning processes.

While this sounds nice in theory, designers will have to face the complexity of
real scenarios, by copying with the following issues:

• genotype-to-phenotype mapping, for which changes to the controller
representation does not imply a 1:1 change to the controller’s behavior.
In practice, this will render the fitness landscape less smooth.
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• selection of an appropriate fitness function, which has a crucial
influence on the final task. The selection is difficult because of the various
constraints to consider in real world problems;

• time and memory efficiency. Being a population-based method that
simulates repeated interaction with the environment, the learning process
can be very computational intensive and last long time.

• gap between simulation and real environment. While the learned
controllers might work well for the learning scenario, the end environment
will certainly behave differently, because of its great stochasticity. Clearly,
one can make the evolved controller less sensitive to certain features by
varying them during the evolution. Typical approaches for producing
more general solutions are incremental evolution and re-adaptation (see
[Nol00]).

• scarce understanding of internal working. Being learned through a
self-organizing process, the overall network behavior can not be inferred
by analyzing the individual connections.

2.7 Automating energy management

The vision of a smart grid combining multiple microgrids raises questions related
to the control of such networks. In particular, the availability of a dynamic
price signal demands for agent-based solutions capable of negotiating resources
to coordinate the networks.

An early work on scheduling household appliances using computational
markets was presented by Ygge and Akkermans [Ygg96]. Towards this vision,
[Pal11] surveys demand response solutions, while open challenges towards the
employment of intelligent agents are discussed in [Ram12, Kok05, Lam10]. En-
ergy trading has been implemented using various mechanisms [Saa12], such
as cooperative games [Ala13], as well as based on cost-minimization and non-
cooperative games [Kok05, Adi14, Cha14b, MR10] especially double-sided auc-
tions [Vyt10, Ili12, Wan14]. As opposed to centralised scheduling based on
optimization, market-based approaches can better deal with self-interested
agents competing for scarce resources [Cle96]. A shared price balances the
demand and supply in the system, therefore acting as congestion management
mechanism that coordinates the individual agents. Agents can keep their pref-
erences private and act solely based on their local view of the environment.
Before going to further detail, it is important to distinguish in two different
types of markets: i) a wholesale electricity market in which generators compete

29



2.7 Automating energy management 2 Background and related work

to supply their output to retailers and ii) a retail electricity market in which
end-use customers can select their supplier from a pool of competing retailers.
The “AMES Wholesale Power Market Test Bed” is a market simulator, in which
energy markets are held to allocate hourly energy intervals [Li09]. As for retail
markets, latest research has also targeted the consideration of appliance usage
behavior and preferences. To plan unobtrusive control strategies, usage prefer-
ences are considered to keep the produced discomfort low. In particular, [Bap11]
introduces a system to determine preferred time of use of appliances to minimize
running costs and activity disruptions. Later works, such as iDR [Cha14a], DR-
Sim [Wij13] and the HEMS simulator [Mon14c], analyze consumption behavior
and preferences to reduce the discomfort produced by control strategies.

2.7.1 Auctions

Electronic markets provide a framework for the allocation of limited resources
in communities of self-interested agents [Cle96]. In particular, pricing allows
for adaptive control of distributed resources, leading to the emergence of global
coordination of competitive entities. The result is optimal locally, i.e., according
to the individual agent’s utility, as well as global, i.e. in terms of social welfare.
Market-based allocation takes place through auctions. Generally, auctions can
be classified in [Par11]:

single-dimensional and multi-dimensional In a single-dimensional auc-
tion the offered price is the sole attribute used for ranking the bidders,
whereas in multi-dimensional ones other quality measures are employed.

one-sided and two-sided One-sided auctions are characteristed by only a
type of bidders, be that buyers or sellers, and a central auctioneer deter-
mining the winner. Auctions with multiple sellers are called procurement
auctions. In two-sided auctions, the auctioneer matches offers coming
from multiple buyers and sellers.

open-cry and sealed bid In open-cry auctions all bidders are aware of
every other bid, whereas in sealed-bid auctions only the auctioneer has
global visibility on offers.

first price and kth price In first price auctions the winner pays the price
of the winning bid, whereas in the kth price auction the bidder pays
the price of the bid ranked kth. The kth pricing mechanism is used to
implement incentive compatibility, such as in the Vickrey auction in which
the winner pays the 2nd highest bid. The so called Vickrey-Clarke-Grove
(VCG) mechanism bases its functioning on the absence of communication
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among agents to achieve preference elicitation. While the mechanism is
sensitive to collusion between agents, it is this way possible to show a
dominant strategy for agents to bid truthfully.

single-unit and multi-unit In a single-unit auction bids can be made for
a single good or individual bundles of goods, whereas multi-unit auctions
allows bidders to express their preference on multiple units of the same
product.

single-item and multi-item (i.e., combinatorial) As opposed to single-
item auctions, combinatorial auctions allow bidders for expressing pref-
erence over bundles of goods, as well as select goods of different type or
quality. In particular, the preference expressed on bundles has a superad-
ditive property, by which only when sold together multiple products can
maximize user’s preference. For instance, the agent’s utility is maximized
only when frequency in area A and B are sold together.

The most common types of auctions are the English and Dutch auctions, which
are distinguished respectively for the presence of an ascending and a descending
price. These are single-dimensional, one sided, open-cry first price auctions.
The Vickrey auction is a second price sealed bid auction, which contrarily to
the english and the dutch auction is incentive compatible. As anticipated,
a dominant strategy is shown on bidding according to the agent’s private
preference. However, as anticipated, the auctioneer is shown extracting very low
profit in presence of collusion or very low resource valuation among the bidders.
Multi-unit variants are also available for the English and Dutch auctions. In
that case, the bidders report the quantity to purchase at the current price and
the auctioneer updates the price to match the demand and supply curves. For
instance in a multi-unit english auction, the price is increased as long as demand
exceeds available supply. Given that bidders are acting rationally they will not
increase the amount for a price more than their utility, thus ultimately meeting
the available supply. Buy-side and sell-side auctions match many sellers to
a single buyer and vice versa many buyers to one seller. Two-sided auctions,
also called double auctions, aim at matching multiple buyers and sellers in one
place. We normally distinguish in discrete-time double auctions and continuous-
time double auctions, respectively using a uniform and a discriminative pricing
mechanism. In the former, also called periodic or clearing-house markets, bidders
are entitled to make an offer throughout a time interval called the trading day.
At the end of the day the auctioneer closes the market and collected demand
and supply curves to compute a clearing price. The clearing price is the price
at which available supply matches demand, i.e., there is no leftover supply
or demand. In continuous-time double auctions, the auctioneer immediately
matches offers as soon as compatible ones are received. Compatible offers are
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those in which the supply has higher quantity and lower price than the demanded
one. Stock markets are examples of continuous-time double auctions in which
blocks of shares are sold at certain prices, with buyers seeking to buy subset
of those at a different price. In the context of energy management double-side
auctions have been widely used. In the NOBEL project [Ili12], a discrete-time
double auction is used for a district energy market, where traders allocate their
energy at a 15-minute scale. Similarly, a day-ahead continuous-time double
auction is used in [Vyt10] to balance supply and demand in a power network. A
balancing mechanism is implemented by charging deviations from the forecasted
demand and production amounts.

In general, multi-unit auctions have been less researched than single-unit
ones, being harder to analyze. In fact, multi-unit auctions can be considered
as a uniform-price auction, in which all bidders are charged the clearing price.
However, the uniform-price auction is shown having a set of possible equilibria
yielding inefficient outcome. The main reason for such an inefficiency is that
uniform pricing incentivizes “demand reduction”, i.e., bidders will bid less than
their utility value for a unit in order to lower the price payed for all units
[Aus97]. In Vickrey’s multi-unit auction, truthful bidding is ensured by making
the winner’s price dependent on the “opportunity cost” for the allocation, rather
than the bid or the clearing price [Cra06]. In detail, the allocation of k objects
to bidder i is charged ∑k

i=0 k − ui, i.e., for the first unit with the price of the kth

highest rejected bid, for the second unit with the price of the (k − 1)st highest
rejected bid, and so forth. To achieve this, each bidder reports his valuation for
all possible packages, so that items can be allocated efficiently (i.e., to maximize
social welfare). Clearly, the enumeration alone has complexity O(2n). In spite of
its theoretical properties, this makes it often not applicable to practical contexts.
Another kind of multi-unit auction is Ausubel’s [Aus97], which operates as a
price-ascending auction in which each winning bidder is assigned the quantity
demanded at the clearing price, although it is charged for the price at which
he “clinched” his opponents. The auction is shown yielding the same outcome
of a sealed-bid Vickrey auction. According to the clinching rule, for each
price p being selected, the auctioneer determines whether for any bidder i the
aggregation of demand of all other bidders for p is less than the available supply
M . In that case, the difference is defined as “clinched” and is allocated to bidder
i at price p. For instance [Aus97], three bidders initially bid for respectively 2,
1 and 1 units of the same resource. We assume 2 units of supply available. The
price gets increased until price p, when the third bidder reduces its quantity
from 1 to 0, thus dropping out the auction. Now, the opponents of the first
bidder together demand only 1 unit. Consequently, such a demand for 1 unit is
lower than the overall available supply of 2 units. In this case, the first bidder
“clinches” 1 unit at the current price p. The auction continues as long as supply
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is still available. The mechanism is shown eliminating any incentive for demand
reduction. Moreover, in presence of sealed-bids a dominant strategy is shown on
truthful bidding [Aus97], thus it yields the same outcome of the Vickrey auction.
The main advantage over Vickrey’s is the possibility of agents in ascending-price
auctions to retain their demand curve private, while acting truthfully. Also, the
iterative ascending-price update provides price discovery, while still allowing for
the retain of the individual bidder’s utility private.

As previously discussed in the auction classification, there exists auctions
for multiple objects. The simultaneous ascending auction is one of this kind
[Cra06], in which bidders send sealed bids for each available item. Given the
complementarity between items (i.e., u(A +B) > u(A) + u(B)), losing an item
in a later auction would render the iniatial winning useless. Therefore, items
are auctioned simultaneously in separated auctions rather than sequentially.
The auction takes place in multiple rounds, at the end of which the sealed bids
are taken to identify and expose the currently winning bidder. This allows the
other bidder to adjust their future bid, by reducing amount for those products
being evaluated more than their utility. A monotonicity activity rule makes sure
that bidders do not decide to wait to observe others’ behavior before bidding
strategically. Accordingly, in order to be allowed for bidding each bidder has
to indicate the demand for each item beforehand. Each bidder can only bid a
lower or equal amount than initially stated.

As a matter of fact, the complementarity between items in multi-item
auctions can be addressed only with combinatorial auctions. Combinatorial
auctions allow bidders for expressing preference directly on combinations of
goods. However, the main drawback is the increased complexity for bidding, as
well as the NP-hardness in solving the winner determination problem. Moreover,
combinatorial auctions suffer of the “freerider” problem. Assuming three agents,
respectively interested in the item A, B and the bundle A and B. The third agent
is in competition with the two others and loses whenever u1(A) > u3(A +B) or
u2(B) > u3(A +B), with ui evaluation for agent i. Thus, winning depends on
the evaluation that either agent 1 or 2 attributes to A and B. Automatically,
one of the two becomes a “free rider”, as regardless of his evaluation he can be
allocated the good. Various types of combinatorial auctions are available, such
as proxy auctions, in which a central proxy agent is used to ultimately allocate
items depending on their complementarities. We refer to [Cra06] for a thorough
discussion.

2.7.2 Efficiency measures

Market mechanisms are commonly evaluated using the allocation efficiency,
according to which efficient mechanisms are those that maximize social welfare,
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i.e., the sum of utilities delivered to traders in a certain allocation. Consequently,
the efficiency is maximized when all possible profit is extracted from the traders,
and can be computed as:

ε = Πa

Πe
=

Πa
b +Πa

s

Πe
b +Πe

s

(2.1)

that is the ratio between the surplus of all traders Πa and the maximum possible
surplus Πe that would be obtained in a centralized and optimum allocation.
The profit Πb for a buyer j is given by ∑i∈N(ψbj − pij)qij with ψbj sensitivity
price and qij quantity bought from seller i at the unit price pij. The profit
Πs for a seller i is given by ∑j∈N(pij − ψsi)qij with ψsi reservation price and qij
quantity sold to buyer j at the unit price pij. The actual overall profit Πa is
given by the sum of the actual profits of all buyers and sellers, computed as
difference between the agent’s private value and the actual unit price paid. The
equilibrium profit Πe is given by the sum of equilibrium profits of all buyers
and sellers, computed as difference between the agent’s private value and the
market equilibrium price p0. The equilibrium price is at the intersection of the
supply and demand curve and can be computed as the price of an auction in
which agents declare their private value for the good to trade [Phe08]. Market
efficiency is related to Pareto optimality, as in any zero-sum game an agent can
not get any better condition without worsening someone else [Par11].

In [Chu02], responsiveness of services is considered to provide a user-centric
performance metric for job schedulers in clusters. Each request for service
operation is associated to a utility capturing the value of the resource. The
valuation of service provisioning considers its responsiveness, by decaying the
delivered utility over time. For a buyer bj ∈ B, Vj(r) = δ ⋅Uj(r), with δ expressing
the discomfort received from the delayed allocation over the utility Uj to receive
r amount of resources. The user-centric efficiency is computed as the overall

value delivered to users at the allocation time, that is
n

∑
j=1
Vj.

2.8 Summary

In this chapter, we provided a comprehensive literature work on energy moni-
toring systems (Sect. 2.1), specifically on existing energy datasets (Sect. 2.2),
current interoperability issues (Sect. 2.3), data management and analysis ap-
proaches (Sect. 2.4), interactive systems and their effectiveness in fostering
behavioral change (Sect. 2.5), as well as means to design autonomous systems
(Sect. 2.6) and market mechanisms for the coordination of self-interested agents
(Sect. 2.7).
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CHAPTER

3
Collecting energy usage
data

”In God we trust, all others bring data.”

– W. Edwards Deming

This thesis relies on the GREEND dataset for most of its evaluations. This
chapter describes the developed measurement platform and discusses the mea-
surement campaign undertaken for its collection.

3.1 The measurement platform

The employed measurement platform consists of a combination of off-the-shelf
solutions. The measurement is carried out through the Plugwise Basic1 kit,
consisting of a Zigbee network of 9 Smart Plugs (SPs), each collecting active
power measurements from the connected load (see Fig. 3.1). Through a USB
dongle, the network is managed by an ARM-based mini computer, namely a
RaspberryPi2 or a Beagle Bone3 board. Outages are prevented on the system
using the Anker Astro E5 15000mAh external battery4.

Table 3.1: Specifications of selected boards
Model Power CPU RAM Connectivity Price

Raspberry Pi B 700 mA (3.5W) Broadcom BCM2835 @ 700MHz 512 MB 10/100 Ethernet 35$
BeagleBone Black 210–460 mA ( 2W) AM335x 1GHz ARM Cortex-A8 512 MB 10/100 Ethernet 45$

1http://www.plugwise.com
2http://www.raspberrypi.org
3http://beagleboard.org/bone
4http://www.ianker.com/support-c1-g228.html
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(a) A RaspberryPi (b) Plugwise smart plugs

Figure 3.1: The measurement platform

3.2 Data collection infrastructure

To guarantee a certain degree of reliability in our campaign we implemented
fault recovery in our software daemon. The overall code base is freely available
as a Sourceforge project5. The daemon consists of a collector and a manager
script (See Fig. 3.2). The manager keeps the collector up to date, by periodically
checking our servers for newer versions. The manager starts and monitors the
collector. As soon as a newer version becomes available it replaces the old with
the new one. All requests to our servers are authenticated through an API
key, specifically assigned to each householder beforehand. This information is
provided to the manager through a configuration file. The collector initializes
the hardware measurement units, from which collection take place over epochs.
In each epoch, power measurements are retried from each meter using the open
source python-plugwise6 library. In order to guarantee a uniform epoch duration,
the collector detects and skips nodes which are temporarily not available.
Failures can result from two different sources: i) incorrectly read values due

5http://sourceforge.net/projects/monergy
6https://bitbucket.org/hadara/python-plugwise/wiki/Home
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(a) Data management
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Figure 3.2: The measurement infrastructure

to communication failures or faulty nodes, as well as ii) timeouts due to node
disconnections. For the former, retrial is performed only when remaining time
is enough to guarantee the epoch duration. Unplugged nodes are handled using
a blacklist, specifically to prevent their interrogation for a certain backoff time.
While this allows for the prevention of future timeouts, it yields missing values
for those nodes only temporarily unreachable. As for data storage, multiple
possibilities exist. Collected measurements are collected in a window, whose
size can be specified along with other settings in the configuration file. Upon
completion of the window size, the data can be either sent as a Javascript Simple
Object Notation (JSON) message sent to a REST interface. In this case, the data
is remotely stored in a MySQL database, whose content can be visualized and
further downloaded by the campaign managers (Fig. 3.2b). Another possibility
is to save locally the samples as a daily Comma Separated Value (CSV) file.
This solution was used for a building lacking internet connection. In addition, we
provide the possibility to periodically upload collected CSV files using a Secure
File Transfer Protocol (SFTP) connection to our servers. This is normally done
at the end of the day, when a new CSV file is being created.
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3.3 The GREEND dataset

GREEND was designed to overcome the limits of by existing datasets, as
presented in Sect. 2.2. In particular, we based our requirements on those of load
disaggregation [Zei12], as they are generally stricter than other kind of analysis.
We collected active power measurements at 1 Hz, as according to [Arm13] this
allows for the identification of 8 devices or more. Measurements were gathered
from the energy hogs identified in Sect. 5.1.1 and [Mon13c]. We seeked diversity
in both device types and users demography, and favoured a long campaign to
allow observing seasonal patterns. The campaign lasted more than 1 year, with
the first house being monitored in December 2013 and the last version being
released in June 2015. In particular, this included:

• House #0 a detached house with 2 floors in Spittal an der Drau (AT).
The residents are a retired couple, spending most of time at home.

• House #1 an apartment with 1 floor in Klagenfurt (AT). The residents are
a young couple, spending most of daylight time at work during weekdays,
mostly being at home in evenings and weekend.

• House #2 a detached house with 2 floors in Spittal an der Drau (AT).
The residents are a mature couple (1 housewife and 1 employed) and an
employed adult son (28 years).

• House #3 a detached house with 2 floors in Klagenfurt (AT). The residents
are a mature couple (1 working part-time and 1 full time), living with two
young kids.

• House #4 an apartment with 2 floors in Udine (IT). The residents are a
young couple, spending most of daylight time at work during weekdays,
although being at home in evenings and weekend.

• House #5 a detached house with 2 floors in Colloredo di Prato (IT).
The residents are a mature couple (1 housewife and 1 employed) and an
employed adult son (30 years).

• House #6 a terraced house with 3 floors in Udine, (IT). The residents are
a mature couple (1 working part-time and 1 full time), living with two
young children.

• House #7 a detached house with 2 floors in Basiliano (IT). The residents
are a retired couple, spending most of time at home.

The device configurations for the selected households are shown in Table 3.2.
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Table 3.2: Device configurations in the monitored households

House Devices

0
Coffee machine, washing machine, radio, water kettle, fridge w/
freezer, dishwasher, kitchen lamp, TV, vacuum cleaner

1
Fridge, dishwasher, microwave, water kettle, washing machine,
radio w/ amplifier, dryier, kitchenware (mixer and fruit juicer),
bedside light

2
TV, networked-attached storage (NAS), washing machine, drier,
dishwasher, notebook, kitchenware, coffee machine, bread ma-
chine

3
Entrance outlet, Dishwasher, water kettle, fridge w/o freezer,
washing machine, hairdrier, computer, coffee machine, TV

4
Total outlets, total lights, kitchen TV, living room TV, fridge w/
freezer, electric oven, computer w/ scanner and printer, washing
machine, hood

5
Plasma TV, lamp, toaster, stove, iron, computer w/ scanner
and printer, LCD TV, washing machine, fridge w/ freezer

6
Total ground and first floor (including lights and outlets, with
whitegoods, air conditioner and TV), total garden and shelter,
total third floor.

7
TV w/ decoder, electric oven, dishwasher, hood, fridge w/
freezer, kitchen TV, ADSL modem, freezer, laptop w/ scanner
and printer

3.4 Summary

In this chapter, we described the data collection infrastructure designed for
a long-term measurement campaign we carried out in Italy and Austria. We
addressed the reliability issues of the employed measurement platform using a
best-effort collection strategy. The outcome of the campaign was the release of
the GREEND dataset, which targets researchers in sustainability and is used in
the following chapters of this dissertation.
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CHAPTER

4
Achieving device and
data interoperability

”If a picture is worth 1000 words, a prototype is worth 1000 meetings”

– D. Kelley

4.1 Architectural requirements

Figure 4.1 sketches an architectural model of an EMS that integrates a load
disaggregation unit to detect legacy appliances. Specific driver components
allows for the detection and management of sub-networks, thus acting as a
proxy to integrate networked devices, smart devices and legacy devices. The
model is implemented over the following 5 layers:

1. Electric layer: Electrical devices are connected to a common local power
distribution network. This layer allows devices to deal with electrical
power measurements. A classic meter works at this level.

2. Network layer: This layer provides network connectivity to embedded
devices. A typical example is given by automation field-buses and wireless
sensor networks, such as building automation systems and wireless smart
outlets (e.g., ZigBee and WiFi). Management of the sub-network requires
a specific driver to interface it to the Home Energy Management System
(HEMS).

3. Service layer: In order to be automatically usable by other devices in
the network, smart devices are required to provide a machine-readable
description of their features and properties. The service layer includes the
mechanisms by which devices can describe and advertise their features,
so that functionalities can be discovered and exploited by other devices
[Jam05].
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Figure 4.1: Architecture for microgrid energy management [Ega15a]

4. Data layer: The data layer provides an abstract representation of data
and functionalities managed by the individual drivers, by providing a
homogeneous interface to access this resource. This also includes the
management of the device profiles, which are datasheets reporting static
information of devices (e.g., sensor accuracy, type) and could be stored on
the manufacturer’s servers. In addition, a data model could be employed
to perform a basic processing of raw data collected from the drivers, so as
to produce a more abstract context representation, which can be stored
in a knowledge base.

5. Application layer: User applications are run in the application layer.
For instance a decision maker might rely on the context representation
stored in the data layer to react to environment changes. A query engine
provides an interface between the data and the application layer. On the
other hand, the network API provides application-level interoperability
to the architecture, thus representing a communication interface between
applications running on different computing environments.

With exception of the electric layer, all layers could be implemented either
locally to the building environment or on remote servers. For instance, a smart
appliance is a device that embeds a computing unit and a network interface. In
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order to be integrated in a HEMS a smart appliance should implement the first
three layers (electric, network and service), although the device could scale to
the application layer in case data management and decision making at appliance
level were necessary.

4.2 Integrating smart and legacy devices

A device stub can deal with physical devices, acting as a proxy for networked
devices, which can be reached using different drivers. A driver interfaces the
remote device using a specific communication technology, such as a ZigBee
network of smart outlets. On the other hand, load disaggregation can be used
to detect operating devices. The stub keeps a local representation of remote
objects, to describe their characteristics and status. This information is made
available to the data layer, so that applications can combine it to other data
sources (e.g., environmental data) for providing specific services.

4.2.1 Detection of legacy devices

Modern EMS can exploit ILM or NILM to extract status information of electrical
loads. For instance, Table 4.1 shows which information can be extracted using
NILM and ILM, as compared to those made available by smart appliances.
This gives the possibility to track device operation and build profiles that can

Table 4.1: Available appliance information for smart and legacy appliances
[Ega15a]

Parameter Smart NILM ILM

ID 3 3 3

Type 3 ∼ 3

Controllable 3 7 ∼
Current power 3 ∼ 3

Energy per day 3 ∼ 3

Appliance usage 3 ∼ 3

be made available throughout the system. This information can be of great
value when planning control strategies, as effective scheduling of smart devices
should also consider the presence and behavior of non-schedulable ones. For
instance, [Car13] indicates white goods as critical for the success of demand
response programmes. Towards the same vision, the authors of [Ega15a] list
important appliances that should be necessarily identified and integrated in a
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Table 4.2: Relevant devices to be integrated in a HEMS [Ega15a]

Type Control. User-dr. Tested in [Ega15a]

Fridge 3 - 3

Lighting 3 3 -

Dishwasher 3 3 3

Oven - 3 -

Microwave - 3 -

Hob - 3 -

Washing mach. 3 3 3

TV - 3 3

Computer - 3 -

Water Kettle - 3 3

Coffee Mach. - 3 3

Vacuum Clea. - 3 3

HEMS, as in Table 4.2. User-driven devices require the presence of users while
operating. Examples are water kettles or vacuum cleaners. As such, they are
not good candidates for automatic load control. Controllability of detected
devices is also an important aspect. Contrarily to smart appliances, ILM and
NILM do not provide means for controlling and thus scheduling loads. For
instance, smart outlets can switch on/off loads, although load operation can’t
be correctly paused and continued afterwards.

4.2.2 Management and representation of appliance data

As previously presented in Sect. 2.3.3, ontologies provide shared vocabularies of
a specific domain and allow for interoperability across networked entities. To
achieve this, it is necessary to model:

• measurement values i.e., measurement data collected from the physical en-
vironment. In this case constraints arise related to the sampling frequency
and the representation of gathered timeseries. Required memory is pro-
portional to the sampling accuracy, therefore alternative representations
such as edge or event-based should be considered.

• appliance profiles which include appliance properties. This information
can be provided by manufacturers as datasheets describing the device
operation modalities. Alternative approaches include having a certified
trustworthy entity providing the profiles, or having the profiles filled by
users. Datasheets can include static information such as as manufacturer,

44



4 Device and data interoperability 4.2 Integrating smart and legacy devices

type, energy rating and user controllability. Being the device operating in
the physical environment, it offers a set physical services. Each service
carries out a specific task, such as the washing cycle for a washing machine.
For the service, a profile includes its power signature, the demanded energy
and the current status (see Fig. 4.2). We distinguish in devices with
permanent consumption, such as fire alarms, and devices operating over
multiple states. A state is defined in terms of a peak active power (in
Watts) and a tolerance to power variations, as well as a state duration
and two discomfort factors. A delay sensitivity (in seconds) defines the
responsiveness of the device, whereas the interruption sensitivity (in
seconds) denotes the tolerance to interruptions of the state. For instance,
the start of a coffee machine should not be postponed from its request
because of an extremely low delay sensitivity, while its water heating state
should not be interrupted because of a low interruption sensitivity. The
status of a service describes the operation (i.e., on, off, or paused), as
well as its progress in terms of start time and elapsed duration. A virtual
service provides the possibility to control a physical service or retrieve
information (e.g., temperature values) through a network interface. The
virtual service is described as a machine-readable interface. In this way,
the appliance can have multiple interfaces to describe the same service.
This information can be automatically extracted and filled out by a load
disaggregation unit, which allows applications for seamlessly access device
information for both smart and legacy devices.

• appliance identification models i.e., algorithm-dependent model describ-
ing the electrical operation of devices through a set of observable states.
While appliance profiles describe the operation for energy management
purposes, identification models target load detection. For instance, this
can be defined using state-based representations such as Finite-State
Machine (FSM) and Hidden Markov Model (HMM), which model the
appliance dynamics as a trajectory of state transitions over time. Specif-
ically, each device observation is described by a set of features, such as
current and power, as well as outgoing transitions to other observable
states. Normally, state features are distinguished in steady state and
transient features. Certain models also express the typical duration of a
device observation (e.g., Hidden semi-Markov Model (HSMM)). Device
dynamics are expressed by associating a transition probability to each
edge connecting observations. Fig. 4.3 reports the ontology for electrical
appliances, showing both the device profile and the load identification
model.

• appliance usage models. As previously stated in Sect. 2.4.2, usage data
can be used to extract models describing appliance usage. In order to
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Figure 4.2: Taxonomy of appliance description and model [Ega15a]

allow applications for exploiting such models, common formats should
be identified. For instance, the Probabilistic OWL (PR-OWL)1 is an
extension to the Web Ontology Language (OWL) that allows for modeling
probabilistic semantic networks, i.e., bayesian networks.

To implement the appliance profile and the load identification model, we used
the the open source tool Protégé2 to build models in the OWL. The resulting
ontology was released for open use on the MONERGY project webpage3. Fig. 4.4
shows an example profile for a water kettle. The device is user driven and
has a physical service to heat water. The service demands 0.03 kWh and is
currently in the OFF status. The service takes place over one state, requiring
1800 W with 5% tolerance being insensitive to interruption and start delay.
Fig. 4.5 reports the load identification model for the water kettle. To identify
the device, this model describes OFF and ON observations, using active power
as a feature. As noticeable, device dynamics are captured using transition
probabilities. Following this example, we further released on Github4 a small

1http://www.pr-owl.org
2http://protege.stanford.edu
3http://www.monergy-project.eu/appliance-ontology/
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Figure 4.3: Ontology for appliance description [Ega15a]
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Figure 4.5: Load identification model for the water kettle [Ega15a]

library based on the Python RDFLib. The library allows for the management
of the ontology and the knowledge base, as well as allows for the retrieval of
information from the semantic network using a SPARQL query engine.

In the example, a gateway is started to manage the household namespace
http://www.monergy-project.eu/houses/1234/. The gateway consists of a
knowledge base (i.e., a graph) and a simulated load disaggregator, as well as a
web interface exposing a SPARQL endpoint. The gateway role is to retrieve
device status from both the network and the load disaggregation unit. For
instance, a water kettle can be modeled as in the Listing 4.1.

Listing 4.1: Modeling a water kettle
1 # cr ea t e an app l iance in the given household
2 a = SmartAppliance ( )
3 a . s e t a p p l i a n c e a t t r i b u t e s ( ” Lakes ide Labs GmbH” , ”WK300” , APPS. WaterKettle , True )
4
5 # Add supported t e chno l o g i e s f o r the dev i ce
6 a . add M2M technology ( ”COAP” )
7 a . add M2M technology ( ”DPWS” )
8
9 # de f i n e a s e r v i c e f o r the water k e t t l e

10 ke t t l eS t a t eZe r o = State ( order=0, peak power =1800.0 ,
11 s t a t e du r a t i on =60, power to l e rance=5,
12 d e l a y s e n s i t i v i t y =0, i n t e r r u p t i o n s e n s i t i v i t y =0)
13 k e t t l e S i gna tu r e = ModelBasedDeviceSignature ( )
14 k e t t l e S i gna tu r e . add s ta te ( k e t t l eS t a t eZe r o )
15 k e t t l e S t a tu sO f f = Status ( ”Off ” , c u r r e n t s t a t e=ke t t l eS t a t eZe r o )
16 waterHeat ingServ ice = Phys i c a l S e rv i c e (name=”waterHeat ingServ ice ” ,
17 d e s c r i p t i o n=’ This s e r v i c e d e s c r i b e s the operat ion o f a water k e t t l e ’ ,
18 s i gna tu r e=ke t t l eS i gna tu r e , s t a tu s=ke t t l eS ta tu sOf f , consumption=0.03)
19 a . a dd phy s i c a l s e r v i c e ( waterHeat ingServ ice )
20
21 s e l f . data manager . add appl iance ( a )

The add appliance method converts all appliance attributes into RDF triples
that are added to the main semantic network.

4https://github.com/pilillo/EMSDataManager
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Listing 4.2: The semantic network in the n3 format
1 @pref ix apps : <ht tp : //www. monergy−p ro j e c t . eu/ on t o l o g i e s / app l i ance s . owl#> .
2 @pref ix ba s e : <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/> .
3 @pref ix r d f : <ht tp : //www.w3 . org /1999/02/22− rdf −syntax −ns#> .
4 @pref ix r d f s : <ht tp : //www.w3 . org /2000/01/ rdf −schema#> .
5 @pref ix xml: <ht tp : //www.w3 . org /XML/1998/ namespace> .
6 @pref ix xsd : <ht tp : //www.w3 . org /2001/XMLSchema#> .
7
8 <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ app l i ance s /4 bdf9953a5880b0eb943360b8d90bd0b46330babcaad11a44f7b536a96110bc0#Appliance> a

apps :Appl iance ;
9 apps:hasEnergyClass ”UnknownRating” ;

10 apps:hasManufacturer ” Lakes ide Labs GmbH” ;
11 apps:hasManufacturerProductID ”WK300” ;
12 apps :ha sSe rv i c e <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ s e r v i c e s /4

bdf9953a5880b0eb943360b8d90bd0b46330babcaad11a44f7b536a96110bc0 waterHeatingService#Phys i c a l S e rv i c e> ;
13 apps:hasType apps:WaterKett le ;
14 apps:implementsM2MTechnology ”COAP” , ”DPWS” ;
15 app s : i sCon t r o l l a b l e f a l s e ;
16 apps : i sUserDr iven true .
17
18 <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ app l i ance s /811 ea636d7ae213a3d5120e80070dbc9598d6673d9c838b5a3988983c7407c57#Appliance> a

apps :Appl iance ;
19 apps:hasEnergyClass ”UnknownRating” ;
20 apps:hasManufacturer ” Lakes ide Labs GmbH” ;
21 apps:hasManufacturerProductID ”WK300” ;
22 apps :ha sSe rv i c e <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ s e r v i c e s /
23 811 ea636d7ae213a3d5120e80070dbc9598d6673d9c838b5a3988983c7407c57 waterHeatingService#

Phys i c a l S e rv i c e> ;
24 apps:hasType apps:WaterKett le ;
25 apps:implementsM2MTechnology ”COAP” ,
26 ”DPWS” ;
27 app s : i sCon t r o l l a b l e f a l s e ;
28 apps : i sUserDr iven true .
29
30 <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ s e r v i c e s /
31 4bdf9953a5880b0eb943360b8d90bd0b46330babcaad11a44f7b536a96110bc0 waterHeatingService#Phys i c a l S e rv i c e> a

apps :Phy s i c a l S e rv i c e ;
32 apps:hasConsumption 3e−02 ;
33 apps :ha sDesc r ip t i on ”This s e r v i c e d e s c r i b e s the operat ion o f a water k e t t l e ” ;
34 apps:hasServiceName ”waterHeat ingServ ice ” ;
35 apps :hasS ignature <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ s i gna tu r e s /
36 4bdf9953a5880b0eb943360b8d90bd0b46330babcaad11a44f7b536a96110bc0#

ModelBasedDeviceSignature> .
37
38 <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ s e r v i c e s /
39 811 ea636d7ae213a3d5120e80070dbc9598d6673d9c838b5a3988983c7407c57 waterHeatingService#Phys i c a l S e rv i c e> a

apps :Phy s i c a l S e rv i c e ;
40 apps:hasConsumption 3e−02 ;
41 apps :ha sDesc r ip t i on ”This s e r v i c e d e s c r i b e s the operat ion o f a water k e t t l e ” ;
42 apps:hasServiceName ”waterHeat ingServ ice ” ;
43 apps :hasS ignature <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ s i gna tu r e s /
44 811 ea636d7ae213a3d5120e80070dbc9598d6673d9c838b5a3988983c7407c57#

ModelBasedDeviceSignature> .
45
46 <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ s i gna tu r e s /4 bdf9953a5880b0eb943360b8d90bd0b46330babcaad11a44f7b536a96110bc0#
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ModelBasedDeviceSignature>
47 apps:hasStateModel <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ s t a t e s /4

bdf9953a5880b0eb943360b8d90bd0b46330babcaad11a44f7b536a96110bc0 0#State> .
48
49 <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ s i gna tu r e s /811 ea636d7ae213a3d5120e80070dbc9598d6673d9c838b5a3988983c7407c57#

ModelBasedDeviceSignature>
50 apps:hasStateModel
51 <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ s t a t e s /811 ea636d7ae213a3d5120e80070dbc9598d6673d9c838b5a3988983c7407c57 0#

State> .
52
53 <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ s t a t e s /4 bdf9953a5880b0eb943360b8d90bd0b46330babcaad11a44f7b536a96110bc0 0#State> a

apps :S tate ;
54 apps : ha sDe l aySen s i t i v i t y 0 ;
55 app s : h a s I n t e r r up t i o nS en s i t i v i t y 0 ;
56 apps:hasOrder 0 ;
57 apps:hasPeakPower 1 .8 e+03 ;
58 apps :hasStateDurat ion 60 ;
59 apps:hasWorkingPowerTolerance 5 .
60
61 <ht tp : //www. monergy−p ro j e c t . eu/ houses /12345/ s t a t e s /811 ea636d7ae213a3d5120e80070dbc9598d6673d9c838b5a3988983c7407c57 0#State> a

apps :S tate ;
62 apps : ha sDe l aySen s i t i v i t y 0 ;
63 app s : h a s I n t e r r up t i o nS en s i t i v i t y 0 ;
64 apps:hasOrder 0 ;
65 apps:hasPeakPower 1 .8 e+03 ;
66 apps :hasStateDurat ion 60 ;
67 apps:hasWorkingPowerTolerance 5 .50



4 Device and data interoperability 4.2 Integrating smart and legacy devices

Figure 4.6: Web interface to run SPARQL queries

This makes the appliance already integrated in the system. Fig. 4.6 shows
a web interface from which SPARQL queries can be run. The example query
returns the URI of all appliances that provide a service, along with the device
type (See Fig. 4.7).

Figure 4.7: Web interface showing the result of the query
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4.3 Summary

In this chapter we discussed interoperability issues in EMS. We introduced a
multi-layer architecture for energy management systems and identified as a core
challenge the integration of legacy and smart devices. To this end, we advocate
an ontology representation of the domain which describes both device dynamics
and models for load disaggregation. On one hand this allows for sharing
appliance profiles with applications, which can this way consider legacy devices
to better shedule resources. We provide as example the modeling of a water
kettle and show how information can be managed and retrieved using existing
RDF libraries. While the actual detection of devices goes out of the scope of this
chapter, we expect the future integration with load disaggregation frameworks,
as the nilm toolkit [Bat14]. The availability of appliance information can also
potentially improve the load disaggregation process, by making models available
at a larger scale. SPARQL can be used for performing both queries and updates
on the semantic network. The integration with specific fieldbus standards for
device control is yet to be addressed.
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CHAPTER

5
Improving energy aware-
ness

”The first step toward change is awareness. The second step is acceptance.”

– Nathaniel Branden

In this chapter, we introduce and assess the effectiveness of feedback means in
fostering energy conservation. We firstly describe the regions under experiment
and identify potentially applicable solutions. The ultimate goal is to provide a
working management system where feedback means can be freely implemented
and evaluated.

5.1 Energy usage in Austria and Italy

Households account for a relevant portion of the overall energy consumption.
The MONERGY project aimed at lowering such consumption by fostering
efficiency through behavioral change. The project focused on the Italian region
Friuli-Venezia Giulia (FVG) and the Austrian federal state Carinthia (CAR) and
had as partners the University of Klagenfurt, the Lakeside Labs and the Italian
company WiTikee. Therefore, the results hereby presented are the outcome of
such collaboration and the ownership of individual results is explicitly stated.

5.1.1 Scenarios

The first stage included the analysis of consumption scenarios in the regions
[Mon13c]. In particular, we carried out a web-survey on our project website.
Citizens older than 18 were asked to provide characteristics of the building, as
well as electrical devices and their usage. Advertisement was done via mailing
lists (e.g., companies and universities).
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The survey required an average of 15 minutes to be completed, and included
43 questions grouped in 5 categories:

• household information;

• use of electrical devices;

• sensitivity towards energy consumption and renewable energy generation;

• sensitivity and expectations towards technology;

• demographic information.

A total of 340 full responses out of 397 participants were collected, with a
completion rate of 85.64%. This included respectively 186 responses from
Carinthia (i.e., 96 female and 90 male) and 139 from FVG (i.e., 63 female and
76 male). The study showed a greater use of electrical devices for cooking
and heating purposes in Carinthia. For FVG lower electricity costs can be
accounted due to a more developed gas distribution network. Installed renewable
energy generation is limited, with photovoltaic having the highest diffusion
(7.91% in FVG and 2.69% in Carinthia). Differences on electrical devices
are mostly due to climate differences. Residents in Friuli tend to use air
conditioners (45.19% compared to the 2.16% of Austrian respondents) and are
billed according to time-of-use tariff plans, which is possible due to the already
available digital meters. As a consequence, householders in FVG declared to
already exploit more favouravle pricing conditions when operating their washing
machine (62.59%), lights (24.46%), iron (22.3%), electric oven (21.58%), dryer
(10.79%), conditioner (10.07%), and dishwasher (9.35%). For Carinthia the only
available countermeasure to increase efficiency is device replacement, as done by
67.20% respondents in the last 4 years in Carinthia. Nevertheless, householders
expressed their willingness to exploit time-of-use pricing schemes to operate
their washing machine (48%), electrical boiler (23%) and dryer (20%).

An estimation of energy usage in residential settings followed in [Kha14],
along with an assessment of residents’ attitude towards demand response and
energy management systems. Similarly, the identified consumption scenarios,
i.e., the involved electrical devices and building characteristics, were used to
sketch requirements for the communication infrastructure [D’A14].

5.2 Increasing the feedback resolution

As shown in Sect. 5.1.1, in Carinthia the lack of high resolution consumption
data makes hard to further analyze data at the meter level. However, as shown in
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Sect. 2.5 the most effective conservation strategies are feedback approaches that
provide device-level information. For such reason, we introduced in [Mon13b]
the concept of pay-as-you-go electrical devices. This combines prepaid billing
and device-level information. The main concept is the possibility to associate
a credit to each electrical device. In this way, by having the credit decreased
and shown for any usage of the appliance the user can receive a device-level
feedback. To this end, we used a off-the-shelf monitoring solution to collect
power consumption at device level and we implemented a mobile Android appli-
cation1. A central gateway based on a Raspberry Pi gathers the samples from
the networked measurement units, detects starting events and enhances such in-
formation with further contextual information. Ultimately, usage events of type
⟨start, duration, consumption, energyprice⟩ are collected by a remote Google
AppEngine webservice2 for each usage. Intuitively, differences on the energy
price provides a non-technical measure of the costs for operating the device.
This provides broken-down understanding of expenses, which might eventually
trigger the replacement of the devices responsible for higher consumption and
expense. The mobile application offers a quick gateway to such information,
and displays event notifications (See Fig. 5.1). In particular, the Google Cloud

Figure 5.1: The Android application

messaging infrastructure was used to notify all users’ terminals whenever a

1https://play.google.com/store/apps/details?id=at.aau.monergyapp
2https://appengine.google.com/
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device runs out of credit (See Fig.5.2). The approach offers a reliable eventing

Figure 5.2: Event notification

mechanism while ensuring low battery consumption and network usage.

To assess the early acceptance of the notification mechanism we run a user
testing session. Accordingly, 7 users were asked to interact with the mobile
application. Specifically, we asked them to operate a water kettle and think
aloud while interacting with the application. The objective was to observe
their perception of the smart notification mechanism, namely concerning their
understanding of costs for operating electrical devices and the intrusiveness of
the interface. In particular, the first operation of the water kettle would only
decrease the credit while the second one would reset it and consequently trigger
the notification mechanism.

All users declared to have noticed the difference in credit terms for operating
the water kettle. Nevertheless, the main negative comment was the necessity of
refreshing the device list to have credit changes visible. The reason is that usage
events are solely notified to the remote server, and are thus not propagated to
the mobile terminals. As for the second operation, the credit gets decreased
to a value below zero and triggers the notification as in Fig. 5.2. Opening
the application causes the automatic refresh and a red-colored credit. Users
declared the second process as more intuitive than the former.

In conclusion, the session allowed us for the identification of interface flaws,
mainly related to the use of a RESTful backend. A more sophysticated transport
technology providing full-duplex connectivity, i.e. websockets, should be em-
ployed in future versions. In particular, the web application messaging protocol
(WAMP) 3 provides a publish-subscribe abstraction over websockets. WAMP
creates a shared event bus where messages are delivered in a soft real-time
fashion to coordinate loosely coupled distributed resources.

5.2.1 Room for intervention

To further analyze energy usage in the regions, the following step was to carry
out a measurement campaign in actual households. As previously shown in
Sect. 3.3, the main outcome was the GREEND dataset.

In [Lak15], we discuss the energy consumption in the monitored sites. In all
sites, the fridge is the most consuming device as it accounts for 40% to 47% of
monitored consumption. A significant fraction is also accounted to the dryer,

3https://tools.ietf.org/html/draft-oberstet-hybi-tavendo-wamp
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the dishwasher and the washing machine. Lighting has also a considerable share,
especially in site S1 where multiple incandescent lightbulbs are present. The
bedside lamp alone accounts for 2% of monitored consumption. In site S2, we
remark the high share given by the plasma TV and the stand-by consumption
of consumer electronics devices (i.e., uninterruptible power supply, network
attached storage, game console, personal computers). Similarly, in site S3 the
desktop computer accounts for about 22% of monitored consumption, which
translates into more than 12 kWh every month. The Italian deployments
present a similar situation, with the fridge being responsible for the largest
share, between 24% and 46% of the total monitored consumption. Televisions
have a considerable impact, with respectively 20%, 25% and 39% of consumption
in S4, S5 and S7. In S4 and S5 the consumption of televisions is higher than the
washing machine, which accounts for only 5% and 10% of the total monitored in
September. As shown in [Lak15], the sites under experiment employ a tariff plan
divided in 2 time slots. Italian users were shown being aware of the incentive,
as monitored devices are operated mostly during the cheaper T2. In particular,
residents of S5 better exploit T2 than others, given the larger consumption
spread between T1 and T2, expecially to operate the washing machine and the
iron. However, it is important to remark that not all devices can be postponed.
Also, the incentive of the Italian tariff plan can only yield limited savings. For
instance, in S4 operating the washing machine in T2 only would save about
0.12 €.

Together with our colleagues from WiTikee, we identified in [Lak15, Mon15]
multiple approaches to improve efficiency:

1. lighting promoting replacement of incandescent bulbs with energy saving
ones;

2. device diagnostics promoting replacement of old appliances with more
energy efficient ones, expecially regarding white goods but also involving
consumer electronics (e.g., LCD/LED TV in place of a plasma TV);

3. shedding of standby losses promoting shed of consumer-electronic
devices when people are not likely to be at home;

4. device shifting promoting postponement of energy demanding devices
to off-peak periods, so as to operate them in cheaper time periods.

To estimate device diagnostics we considered two old fridges installed in
site S5 (See Fig. 5.3). Given the coverage problems in the site, this required
specific measurements for over a week. The measurements revealed an energy
consumption of about 47.7 Wh and 28.6 Wh, for a total amount of 56 kWh per
month and 668 kWh per year. This can be reduced to below 258 kWh per year
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by replacing the two freezers with new appliances having a A+++ energy class4.
The resulting energy saving would be of 34 kWh per month that corresponds
to the 11% of the total energy consumption of site S5.
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Figure 5.3: Power consumption of an old fridge and an old freezer in site S5 for
3 hours [Mon15]

The standby is commonly present on consumer electronic devices (e.g.,
players, televisions) to ensure a prompt reaction to users while operating in
an idle state. In site S7 the analysis showed the television and the decoder
being always in such a status. Fig. 5.4 shows the measured consumption for
multiple days. Power consumption is approximately 6.57 W, which results
in 57.57 kWh per year, namely the 1.4% of the total of site S7 (4099 kWh).
If we observe that several devices can be in standby mode, this proportion
can increase significantly. For instance, 10 devices with stand-by mode would
already mean that 14% of total consumption is wasted this way. One device of
this kind is the ADSL modem, which is being used for a few hours a day but
is often left on all the time. Typical consumption of an ADSL modem with
WiFi and Ethernet is of about 30 W5, which leads to 263 kWh per year. For
instance, a solution might be to shed this load for 3 hours a day and during the
entire weekend. In this case, consumption would be of 98 kWh per year, i.e.
about 37% less energy consumption than when was left on all time. Clearly, this
strategy is effective when a model of device usage and occupancy are available.

Device shifting and curtailment are classic strategies of demand response. It
consists in postponing or reducing the time for which particularly inefficient or
energy-demanding devices are used. As example we consider the consumption

4The calculation assumes that the energy efficiency index (EEI) is equal to 22, the volume
of the freezer is equal to 302 liters, and the appliance category is the 7th.

5goo.gl/IxWTiO
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Figure 5.4: Measured and mean energy absorbed by the TV + decoder of site
S7 [Mon15]

of the plasma TV (42”) and the LCD TV (37”) of site S4 and S5 respectively,
for one day (Fig. 5.5). The plasma consumes significantly more energy than the
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Figure 5.5: Energy consumption comparison of the plasma and the LCD TVs
of site S4 (on top) and site S5 (on bottom) [Mon15]

LCD TV, with an estimated hourly consumption of respectively 200 Wh/hour
and 80 Wh/hour. Beside mere replacement, a possibility to reduce consumption
is to swap the two devices. In detail, the LCD can be used in those rooms whose
occupancy is higher during the day (e.g., kitchen), while the plasma would be
used in rooms occupied in off-peak periods (e.g., bedroom). Savings can be
calculated by considering the time of use of those devices, which for site S4 is
respectively 421 and 148 hours of operation for the plasma and the LCD TV.
In site S5, 771 and 404 hours were estimated respectively for the plasma and
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LCD TV. Swapping the devices in terms of location results in 34% and 23%
lower energy consumption for site S4 and S5, respectively.

5.3 Mjölnir: a web-based energy dashboard

Following the potential room for intervention identified in Sect. 5.2.1, we
developed a web-based energy management system, capable of analyzing energy
consumption and production data resulting from both circuit-level and device-
level measurements. The framework, named Mjölnir, is implemented in PHP 5,
and its default working DBMS is MySQL, although it can be easily extended
to connect to others, such as MongoDB. The project was initiated by myself
and the student Manuel Herold, who took care of the front-end side.

5.3.1 Interface

The interface is implemented in CSS 3 and Javascript. In particular, we
use Twitter’s Bootstrap6 to display seamlessly the dashboard on both mobile
terminals and computers. The dashboard is organized in pages and cells. A
public page is provided to place information visible to other peers, while private
page report the results of data analysis. In particular, the cells can contains
widgets, each performing a different type of analysis on data. This provides
both interface modularity and allows users for adapting the system to display
things in the way that is most meaningful to them, such as by placing things
next to each other and only restricting the field of analysis.

Currently available widgets are:

timeserie showing collected circuit-level power measurements in comparison
to the same hour interval recorded over the previous days;

production and consumption report showing daily energy information
over the last month;

calendar view comparing daily energy use to show anomalous usage pat-
terns;

cost report showing daily aggregated energy cost over the last month;

room-based cost report showing energy consumption and cost per indi-
vidual rooms;

6http://getbootstrap.com
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production and consumption gauges showing energy use for the current
day;

energy estimation showing an estimation of energy production and con-
sumption for the current day, as based on the previous days;

device itemization showing the consumption and cost per device, over the
current day, week and year;

timeline showing energy usage events over a timeline, each described by
their device, consumption and cost;

tariff switch showing the cost and use of devices over the available energy
tariffs, in order to foster use in off-peak periods;

energy advisor returning tips to increase efficiency depending on usage
behavior;

appliance usage showing the usage probability of user-driven devices, com-
puted as frequency counting over monitored days;

occupancy model showing the building occupancy probability based on all
extracted appliance usage models;

5.3.2 Modeling energy price and building information

To facilitate description of activities and processes, the system models buildings,
rooms and individual devices. In particular, this is used to restrict the appli-
cability of widgets to specific data sources. The description exploits the large
vocabulary introduced in [Kel14b], specifically by indicating the device type
(e.g., fridge), mobility and room, curtailability, autonomy (i.e., user control)
and stand-by mode. In addition, we associate a credit to each monitored device,
which is decreased upon device usage as in Sect. 5.2 and [Mon13b]. All cost
analyses rely on an energy price model, which can be expressed as energy tariffs
(e.g., priced time intervals).

5.3.3 Appliance usage and occupancy modeling

To tailor control strategies and feedback to end users, it is necessary to build
models of appliance usage and building occupancy. In Mjölnir, usage of devices
is modeled for weekdays, Saturdays and Sundays using a frequentist approach.
Modeling is on a hourly base although this can be easily reduced to 15 minute
intervals. In particular, based on received usage events we store the number
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of operations for each interval. For the interval, the usage probability is then
computed as P (e) ≈ ne

nt
, that is the ratio between the number of usages occurred

over the number of recorded events (i.e., the number of days the system is
running). Accordingly, P (e) = limnt→∞

ne

nt
.

Similarly, we distinguish in occupancy in weekdays, saturdays and sundays.
Occupancy probability is then calculated by selecting for each interval the usage
probability of the device with the highest usage. While this allows for selecting
the source of information of which we have highest amount of data, this has
the clear drawback of not considering the underlying interdependence between
devices.

5.3.4 Providing tailored efficiency advice

An advisor widget displays a list of advices to foster behavioral change, namely
by displaying the efficiency policies identified in Sect. 5.2.1. In a first stage
candidate advices are formulated and are ranked as based on previous user’s
acceptance or rejection (See Fig. 5.6). The following list reports the pseudocode

Figure 5.6: The advisor widget [Mon15]

for generating candidate advices, as resulting from Sect. 5.2.1:

• Device diagnostics advices replacement of appliances and it is thus
useful to improve non-user-driven devices (e.g., fridge)

1. Select non-user-driven devices

2. Compute average consumption for each device type for all users7

3. Retrieve devices whose average consumption is higher than the one
for the device type of a certain threshold τ1 (e.g., 30%) and suggest
replacement

7Can be done periodically and cached in a separate location
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• Device shifting

1. Select user-driven devices

2. Rank devices by their average consumption (according to consump-
tion events)

3. Rank tariffs by cost in order to select the best and worst tariffs
available

4. Suggest to use the device in the cheapest tariff and report the
potential savings computed as s = (l ⋅ t) − (l ⋅ c), respectively with
l average consumption for the device, c and t cheapest and most
espensive energy tariffs.

• Shedding of standby losses suggests to switch-off devices in standby
mode (such as displays, decoders, DVD players, battery chargers without
load, air-conditioning systems) in periods of not use (e.g., night). The
advice can be returned to all devices with a standby mode, based on the
building occupancy model. However, higher effectiveness can be achieved
by also exploiting available device usage models.

• Device curtailment and moderate usage

1. Select user-driven devices;

2. Rank devices by their positive deviation from the average number of
usage for the device type and cost;

3. Suggest to reduce the amount of times the device is being used and
compute the yearly savings by multiplying the running cost spent
for the current month;

After their formulation, the most effective advices are selected to limit the
information displayed to the user. In particular, we indicate with conversion of
an advice into a behavior when the user explicitly accepts the recommendation.
A conversion causes the disabilitation of the advice, in order to minimize user’s
discomfort. A feedback to an advice can be formalized through the tuple:
(user, advice type, device type, action, time). In this way, it is possible to omit
advices which were previously converted into a behavior (i.e., goal) or involving
device types and advice types with low acceptance (i.e., negative feedback).
This is based on the results presented in [Bee13], which showed that displaying
multiple times the same recommendation does not improve the conversion rate
unless the user has a big opinion drift.

Consequently, the following 3-item Likert scale was used: “Ok thanks”, “I’m
already doing it”, “No thanks” (See Fig. 5.6). Each advice can accordingly be
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formalized through the tuple (user, advice type, device type, enabled, score). A
feedback of kind “I’m already doing it” directly causes the deactivation of the
advice. A usefulness score is then computed for active advices using the votes
resulting from “Ok thanks” and “No thanks”. Such value is used to rank the
advices, while randomness is used to order advices with same usefulness value.
Positive feedback reinforces the advice by increasing its score, whereas negative
feedback can result from a reluctance in operating the device or a mistrust in
the specific advice type. Upon clicking on “No thanks”, the user is asked to
select one of the two causes. Based on this information, we decrease the score
of all advices of the same type, that is, they either involve the same advice type
or device type.

5.4 Acceptance of the advisor widget

As it was previously discussed, the estimated policies confirm that savings can
be detected throughout the automatic analysis of energy usage. However, a
relevant aspect to be addressed is how such opportunities should be presented
to users in a compelling way that can foster behavioral change. To validate
the usability of the advisor widget we decided to carry out a validation test
on actual users. In particular, we were interested in assessing the effectiveness
of the widget in informing and persuading users, as well as their satisfaction
towards the means.

The target audience included householders of any age capable of using basic
functionalities of computers, invited without the promise of a credit for the
participation. We ran a total of 7 participants, all between 25 and 60 years. All
participants had normal or corrected-to-normal vision. In particular, 3 subjects
wore glasses during the study. None of them reported eye disorders, such as
color disfunctions. It is important to remark that there is no optimal number of
participants for this kind of tests. Whilst Virzi suggested 5 users being enough
to spot 80% of usability problems [Vir92], 15 users is normally being considered
as the upper number for this purpose [Nie93].

All subjects were initially informed of the widget functioning prior to being
positioned in front of a desktop computer displaying the interface. The subjects
were asked to use the “think aloud” protocol while following specific instructions
to interact with the interface [Jør89]. We used a synthetic setup with the
following appliances: coffee machine, washing machine, dishwasher, playstation
4 and television. A satisfaction questionnaire was finally given to rate the
attractiveness of the design. Specifically, we used a 5-point Likert scale, with
“strongly agree” as a left anchor and “strongly disagree” as a right anchor.
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5.4.1 Results

Fig. 5.7 shows the results of the questionnaire, with −2 associated to the negative
anchor and +2 to the positive anchor. The entries correspond to the following

q1 q2 q3 q4 q5 q6 q7 q8 q9
3

2

1

0

1

2

3

Figure 5.7: Results of the satisfaction questionnaire

questions: “it takes short time to learn the meaning of the buttons”, “the
position of the buttons is logical”, “I understand what happens when I click the
buttons”, “the advices are unusual, inventive, original”, “the advices are useful
to improve energy efficiency”, “The advices are doable”, “I can learn something
from the advices”, “I would use this widget every day” and “I would use this
widget again”.

5.4.2 Discussion

All subjects immediately understood the functionality of the widget and could
quickly determine which button to use depending on the meaningfulness of
the displayed advice. However, it is important to remark that the advisor did
exhibit a sort of cold start problem, as in some other types of recommender
systems. Accordingly, given the initial absence of votes the advices are solely
ranked on their estimated produced savings. However, we noticed that most
users tried to get rid of all obvious advices by clicking on “I am already doing it”
to remove them from the widget. The majority of the subjects commented the
behavior as a curiosity to see what other advices they could learn from. Users
commented the advisor as “useful” and in a couple of cases as “obvious” and
declared not to be willing to use it every day. We remark that a mechanism
is missing to keep users involved after the advices have been displayed and
the initial learning phase has been overcome. A user commented the advice
acting on stand-by consumption as “obvious” and “useless” and expressed the
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necessity for automatic means to shed such a consumption. The advice related
device diagnostics is considered as the most useful, as it gives an estimation of
possible savings that are not directly visible to householders. Another aspect
that emerged from the guided interaction with the interface is also the lack of
common sense in some advices. While advice applicability determines which
devices a certain advice can cover, there is necessity for further mechanisms
beyond the sole user’s preference to select the candidates. An example is the
advice “did you know that using the coffee machine from Sat to Sun (00 ∶ 00 to
23 ∶ 59) instead of from Mon to Fri (00 ∶ 00 to 23 ∶ 59) can let you save 0.03 € per
usage?”. While postponing certain devices to cheaper energy prices can yield
savings, it should be possible to further diversify devices for their sensitivity
to being shifted over time. In fact, rejection of the advice can prevent it from
being applied to the same device type in future. However, the advice can be
further improved by considering the actual usage model for covered devices.

5.5 Deployments

The 0.3 version of Mjölnir was deployed as a demonstrator at the premises of
the Alpen-Adria-Universität Klagenfurt. In particular, the system consists of
(See Fig. 5.8):

• a Carlo Gavazzi EM24 aggregate power meter, which can be interfaced
using an industrial Modbus/RS485 bus.

• an appliance-level monitoring system based on the commercial Plug-
wise8 kit.

• a webserver running the dashboard. The gateway is based on a
Raspberry Pi and a Libelium RS485 hat9, both cased in a DIN-Rail
enclosure. The gateway runs a linux daemon10 collecting and processing
measurements from the meters, as well as listening for incoming device
control events to be actuated on the network of smart outlets. In particular,
real-time device monitoring and control is implemented using websockets.
This allows a bidirectional communication between the dashboard and the
server, as well as between the gateway and the server, even in presence of a
Network Address Translator (NAT). In addition, the underlying blocking
mechanism prevents continuous polling of devices for monitoring status
changes.

8https://www.plugwise.com
9https://www.cooking-hacks.com/rs-485-modbus-shield-for-raspberry-pi

10http://sourceforge.net/projects/mjoelnir/files/Mjoelnir Gateway.zip
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Figure 5.8: The deployed solution

The main purpose is the deployment of a demonstrator that could act as
testbed for the assessment of new feedback mechanisms. As compared to
residential settings, public spaces (e.g., universities) need to be addressed using
different feedback means [Uta13, M1̈0]. Accordingly, in Table 5.1 we identified
multiple roles and possible involvement strategies. Whilst the involvement

Table 5.1: Use cases of energy management systems in public spaces

Role Involvement Information Action

Owner (Adminis-
trator)

cost minimiza-
tion

energy costs personnel man-
agement

Energy Manager salary energy hogs device replace-
ment

Users (Students) gamification and
social competi-
tion

energy perfor-
mance

informing man-
ager and em-
ployee

Employees
(Prof.)

performance
evaluation (e.g.,
course feedback)

energy perfor-
mance

device curtail-
ment, selection
of appropriate
lecture classes
and more efficient
behavior

of administrative personnel and employees is related to economical factors,
the involvement of users has to be incentivized in multiple ways. In Mjölnir
managers can display consumption at building or room (i.e., circuit level) and
device level. In addition, the distinction between users and employees is done
with public and private pages, where different kinds of widgets can be placed.
The public page is displayed to users on public displays, while the private pages
are meant to provide a full report to the managers.
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5.6 Summary

In this chapter we assessed consumption scenarios in Italy and Austria to
identify potential room for intervention. One possibility to increase the feedback
resolution in the regions is to implement prepaid billing at device level. As the
most effective feedback is that tailored to the end-users’ behavior we introduced
an energy advisor. The advisor implements a list of common practices which
were previously shown to have a potential of up to 34% of savings. The advisor
can automatically process consumption data to return most meaningful policies
for intervention. Accordingly, the information overload is kept low by considering
the history of interaction with the users. The experiences led to the design
and implementation of Mjölnir, a web-based dashboard where various feedback
means can be displayed and assessed.
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CHAPTER

6
Automating energy man-
agement

”The first rule of any technology used in a business is that automation applied
to an efficient operation will magnify the efficiency. The second is that

automation applied to an inefficient operation will magnify the inefficiency.”

– Bill Gates

Chapter 5 assessed the room for improving awareness in domestic environ-
ments and proposed feedback means for the purpose. However, this might not
provide a complete solution to the stabilization of the power grid, as it expects
customers to actively react to changes on energy prices. Self-managing systems
are therefore necessary to assist the scheduling of electrical loads.

This chapter deals with the design of controllers for small energy prosumers,
which can communicate through an energy price and aim at minimizing op-
erational costs. We identify devices that can be automatized and investigate
possible controller representations. Towards this vision, we introduce a sim-
ulation tool to learn appliance controllers. While we initially apply market
mechanisms used in the wholesale markets, we highlight the necessity of trading
power in small power grids.

6.1 Microgrid modeling

A microgrid is a small power system built from the aggregation of local energy
sources and small loads, and it is able to operate as an independent power
island if necessary [Col09]. We therefore distinguish in (Fig. 6.1):

• a smart meter, which is a truth-telling agent metering the energy ex-
changed through the main power grid and the local grid. Its task is to
expose an energy tariff (get) constrained to a power availability function,
as well as a feed-in tariff (fit) and a power capability function.

69



6.1 Microgrid modeling 6 Automating energy management

• a set of smart loads bidding to allocate power on behalf of the residents.
As discussed previously in Sect. 4.2.2, each appliance is a collection
of services, each described by an operation model and a usage model.
The operation model describes the coordinated operation of the system
components in terms of a state sequence, in which a state σi is defined
as a peak power level Pi ∈ N+ and a duration di ∈ N+ in seconds. Each
state is associated to a device start delay sensitivity χb modeling the
responsiveness in seconds, and a state start delay sensitivity χs modeling
the sensitivity to a delayed start for intermediate states, as well as an
interruption sensitivity χi defining the severity under which the state
operation can be interrupted. Consequently, we can distinguish in: i) a
device begin discomfort δb proportional to the overwaited time between the
first offer and the beginning of the operation, ii) a state begin discomfort
δs proportional to the overwaited time between the ending of a state and
the beginning of the next and iii) an interruption discomfort δi having
severe influence on the overall device operation. Based on their start delay
sensitivity, appliances are classified in flexible and inflexible. A usage model
defines the probability of desiring to operate an appliance at a specific time
instant. In its simplest setting, we have a willingness ω∗ ∈ [0, 1] associated
to a decay λ ∈ R, which updates the probability based on concluded
device operations. Given that Puse = 1 − (Phold)N is the probability for an
OFF-ON event within a time interval of length N , Puse = 1−(1−ω∗)N and
consequently (1−ω∗)N = 1−Puse and ω∗ = 1− N

√
1 − Puse. These values can

be extracted from a consumption dataset using appropriate tools such as
[Mon14b] (Sect. 6.2.3). A price sensitivity function ψ specifies the highest
unit price users are willing to pay to operate the load at a given time.

• a set of local generators and energy storage elements to accumulate
excessive energy. A reservation price function is used to model production
costs, which depend on both technological and storage costs.
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Figure 6.1: A smart microgrid
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6.2 The HEMS simulator

To ease the design of smart controllers for energy prosumers we implemented a
simulation tool, which is part of the FREVO evolutionary computing framework1.
The called “home energy market simulator” (HEMS) tool targets both energy
efficiency in terms of management policies, as well as comfort of inhabitants.
The FREVO can handle both feed-forward and fully-connected networks, where
each neuron is connected to every other and itself via several connections. Each
connection is multiplied to a weight, and each neuron associated to a bias.
Evolutionary algorithms are employed to optimize the weights (see Sect. 2.6.4).

6.2.1 Modeling a scenario

A scenario description is a JSON (Javascript simple object notation) dictionary
specifying: i) a weather model, ii) grid connections, iii) local generators and
iv) electrical loads (see [Mon14d] for a complete documentation). Models of
weather, price and power series can be specified as a list of time intervals or as
an external timeserie. Similarly, production of local generators can be computed
using the weather model according to the techinques presented in [P1̈4], as
well as directly read from external timeseries. For the available photovoltaic
generators, weather models indicate the amount of sunlight intensity. This can
be computed using internal sun models, depending on location and positioning
of the generator (i.e., actual exposure), or can be directly collected from a
weather station.

6.2.2 Simulation interface

A graphical user interface is provided in order to display the simulation status
and to plot charts of the selected measures (see Fig. 6.2). In particular, the
top left panel shows the logical topology of the power provisioning. Generators
are represented as rectangles and loads as ellipses, which are marked green
while inactive and red during operation. Edges indicate the direction of the
power provision, and are annotated with the cost and amount transferred. The
balance of each agent is reported on the top right panel. To characterize the
ongoing simulation, multiple tabs at the bottom are used to display charts. The
JFreeChart2 library is used for the purpose. Each tab can be exported to an
external file, as a picture, comma-separated value (CSV) file, as well as LaTeX
TikZ. The price tab displays the average grid energy price and the local energy

1http://frevo.sourceforge.net
2http://www.jfree.org/jfreechart/
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(a) The running simulation

(b) The simulation report

Figure 6.2: Graphical user interface of the HEMS simulator

price, with the latter being computed as the average energy price for all running
transactions. This equals the grid tariff when no energy is traded and the feed-in
tariff when the whole local production is sold back to the grid. This shows the
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minimum price a device has to pay to start operating. The power tab displays
aggregate power produced and demanded locally, while the self-consumption
tab shows the exploitation of local generation. Weather conditions such as the
sun factor are displayed in the weather tab. The market tab displays the market
efficiency of the currently allocated devices. Since energy bought from the grid
is charged under grid tariffs, the efficiency in presence of such transactions
is 1 because Πa = Πe. Consequently, the efficiency measure only considers
transactions between local generators and loads. The willingness tab shows the
trading willingness of each agent, i.e., the tendency to buy or sell energy over
time. We also show the price sensitivity and the reservation price of all agents
in the price tab. The operations tab lists for each device all ran and running
states. This serves to further analyze delays and state interruptions. Another
view is available to analyze step-wise evolution of the market for the ongoing
trading day (Fig. 6.3). The view shows the orderbook, including all ASK and

Figure 6.3: The market view

BID offers being received and matched over time. At the end of the simulation,
a report prompts the overall result, consisting in a list of performance measures
and the achieved fitness (Fig. 6.2).

6.2.3 The appliance-usage model manager

The appliance usage model manager (UMMA) is a tool for modeling device
demand. Usage models can be extracted from energy datasets (see Fig. 6.4b)
and used in simulations within the HEMS (see Fig. 6.4c). For the latter we use a
TCP socket. This encapsulates the model management process into the manager,
with the HEMS requesting the probability for a certain time interval via the
socket. In particular, event datasets should be written in the CSV format as in
Table 6.1. To ease the task of event extraction from power readings, a script is
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(a) The main window

(b) The model extraction interface (c) The usage model server

Figure 6.4: The GUI

available on the UMMA project page 3. Once parsed, values are normalized

Table 6.1: Event data format

Month Hour Weekday ConcludedOperations Starting

... ... ... ... ...

March H7 Weekday 0 Start

March H7 Weekday 1 Hold

March H7 Weekday 2 Hold

March H7 Weekday 3 Hold

March H7 Weekday 4 Hold

... ... ... ... ...

(i.e., to a dataset in the range [0,1]) using x
′ = x−min(x)

max(x)−min(x) . This prevents
features with greater numeric ranges to dominate others. Interoperability for
different technologies and formats is achieved at interface level. In particular,
each model is provided with the current time and the number of operations
already performed in the current hourly interval (see Fig. 6.5). This is important
for those user-driven devices, such as coffee machines, which are generally used
multiple times in the same interval. The tool supports the following technologies:

• Bayesian networks, for which we use the Netica Java library4. In particular,
we model the network as in Fig. 6.6. Depending on the availability

3https://sourceforge.net/projects/umma/files
4http://www.norsys.com/netica-j/
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Figure 6.5: The device model interface

of longer-term measurements, the user can decide whether to include
seasonal information (i.e., the month node). Learning of the network
takes place using the Expectation Maximization (EM) algorithm, whereas
the estimation of usage probability is done by means of the Junction tree
algorithm [Kol09].
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Figure 6.6: The Bayesian network

• artificial neural networks, for which we use the Neuroph Java library5. The
ANN is a multilayer perceptron learned with dynamic backpropagation6.

• support-vector machines, for which we use the libSVM java li-
brary7 [Cha11].

It’s important to remark that default settings were defined based on the
GREEND dataset. Therefore use in different application scenarios will re-

5http://neuroph.sourceforge.net
6http://neuroph.sourceforge.net/javadoc/org/neuroph/nnet/learning/

DynamicBackPropagation.html
7http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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quire further tuning of the models. To this end, the experimenter provides a
benchmarking tool were the models can be assessed. The main experiment
available is the k-fold cross validator, which extracts k randomised folds from
the event dataset. The first k-1 folds are used for training and 1 fold for testing.
The accuracy, mean-squared error, as well as the root-mean-squared error per
each fold and on average are returned. In particular, the accuracy is defined as:

Acc = TP + TN
TP + TN + FP + FN

(6.1)

with TP and TN respectively as the number of true and negative cases correctly
classified. Accordingly, FP and FN are respectively the number of true and
negative cases incorrectly classified.

RMSE =

¿
ÁÁÀ 1

n

n

∑
i=1

(yi − y)2 (6.2)

For an example application of the tool we refer to [Lak15], where we analyze

Figure 6.7: The usage model experimenter

appliance usage in the GREEND dataset.
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6.3 Traders for energy markets

In this section, we design neural controllers for smart prosumers using an
evolutionary learning process. Part of this work was presented in [Mon14c].
For the purpose, we use a market-based approach typical of wholesale energy
markets. Therein the allocation is decided for hourly intervals on a day-ahead
basis, due to the physical limits for the actuation of generators. However,
given the more stringent requirements of microgrids, our solution provides an
infrastructure for power trading at a second resolution. This is important to
avoid underuse of resources, as appliance states can demand provisioning over
seconds rather than hours.

6.3.1 Controllers for smart prosumers

Our approach for the design of smart controllers follows the methodology
of [Feh10], who applies evolutionary methods to train ANN controllers. In
particular, a controller is designed to trade energy for both electrical loads
and local generators (see Fig. 6.8). We use a fully-meshed ANN controller

Operation model Generation model

ControllerUsage Generator

Reservation pricePrice sensitivity

Figure 6.8: The agent structure

representation, which is already availeble in FREVO. In particular, a trading
tendency τ ∈ [−1.0,1.0] (with −1 to sell, 0 to skip the trade and +1 to buy) is
computed to respectively reflect the availability and necessity of power to be
traded. The trading tendency is computed using the leftover of local available
power, which is always used to firstly satisfy local demand. The tendency is
the most important input for prosumers, such as batteries, where it can assume
continuous values to reflect the amount of charge. It is also important to remark
that the starting willingness of a load is initially determined by its usage model
(i.e., ω = ω∗). However, after making a first BID offer, the agent engages for
the allocation (i.e., ω = 1.0), which ensures rationality and commitment for
pursuing the operation of the device.

An action is found using the controller each time the agent wants to buy or
sell energy, according to the following structure:

• seller’s inputs, which include the reservation price (ψsi/pmax), the unit price
of the outstanding ASK (amin/pmax), the position in the ASK orderbook
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(with 1.0 denoting first and 0.0 the last), the percentage of already matched
ASK offer (P reserved

i /P demanded
i );

• context information, including the time the decision is being taken, i.e.,
the hour (midnight is 0.0, 11 pm is 1.0), month (January is 0.0, December
is 1.0) and weekday (sunday is 0.0, weekdays are 0.5, saturday is 1.0);

• trading tendency, which includes the offer importance (1.0 for inflexible
and 0.0 for flexible) and trading tendency τ ;

• buyer’s inputs, which model the delayed start tolerance left (χb
l /χb , with

χb
l initially equal to χb and progressively decreased), the price sensitivity

(ψbj/pmax), the unit price of the outstanding bid (bmax/pmax), the position
in the BID orderbook, and the percentage of already matched BID offer.

All inputs are provided as relative values. Similarly, given that the controller
outputs a real value between 0 and 1, we scale it to [−pmax,+pmax] using
p = 2 ⋅pmax ⋅poutput−pmax. A market threshold pth is then used to decide whether
to formulate a BID (p > pth), ASK (p < pth) or an opt out otherwise. The primary
goal of the controller is to minimize costs, while selecting a price rationally
reflecting the availability of local production and the willingness to start or
complete an ongoing state. Since FREVO is using an absolute ranking-based
selection, there was no need to normalize fitness to positive values or to squeeze
fitness values into a given number range.

The formulated fitness function is:

F = R + (δg ⋅ Igrid) −C, (6.3)

The reward R is the sum of the utility delivered to users upon completion
of device operation, which is the price sensitivity multiplied to the duration
and power of each state described in the device profile. The income Igrid from
the energy fed into the grid is also considered. All costs are then subtracted
(Eq. 6.4) after being weighted through various penalties δ.
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The costs include: i) the energy purchased from the main energy grid Cgrid, ii)
the discomfort resulting from user interaction (i.e., average delayed device start
db, average delayed state start ds, and average interruption time within states
dc), iii) the cost vm of violating the NYSE market policy and iv) the cost vp for
trading irrationally (i.e., with losses). Given that devices have have different
settings, we normalize each average to the delay tolerance of each device. User
discomfort results only from flexible loads Bf , which were operated Bo

f and
have more than a state Bs

f . For inflexible services we consider all time-instants
vi in which offers were not allocated, which is then penalized through δi.

6.3.2 Results

To assess the designed controller we employed a uniform-price double auction
(UCDA). Transactions between local agents are priced under a k-pricing scheme
with k = 0.5 (i.e., equally distributing the profit between buyer and seller),
whereas transactions involving the main power grid are charged under the given
tariffs (i.e., fit and get).

The size of the allocation interval depends strictly on the size of present
electrical loads. On one hand, we desire operating without service interruptions,
as they affect both user comfort and the correct device operation. A 15-minute
allocation interval as in [Vyt10] would reserve the resource for a longer period.
We chose a smaller allocation interval to prevent loads from monopolizing the
resource. In particular, we chose an allocation interval of 1 second, with a 1-
second long trading day taking place over multiple duration-less iterations. The
selected resolution guarantees a minimal delay between trading and allocation
time, and acts as an interrupt mechanism to change scheduling plans to timely
react to environment changes.

To assess the designed controller we evolved a fully-meshed artificial neural
network over 200 generations with the simulation properties shown in Table 6.2
and 6.3. To favor competition, the appliances were set with same price sensitivity.
The simulation scenarios are reported entirily in Appendix B. The first scenario
consists of a sole generation unit, with no present demand. As visible in
Fig. 6.9a, the controller can properly learn to sell its local power in less than
20 generations. We complicate further the scenario by adding a pool of loads,
namely: a dishwasher, a fridge, a water boiler, two washing machines and a
bedside light. Fig. 6.9b shows the fitness landscape, which although less steep
shows convergence to the solution in about 40 generations. The performance
of the learned controller are shown in Fig. 6.10. The controllers are able to
strategically bid as based on their trading tendency and price models. As before,
the generators are able to sell all of their produced energy. The operated loads
learned to run properly, i.e., without service interruptions and excessive delay
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Table 6.2: Evolutionary algorithm properties

Property Value

Random Seed 12345

Generations 200

interXover frequency 10

Mutation probability 100%

Mutation severity 30%

Percentage of elite candidates 15%

Percentage of mutated candidates 40%

Percentage of randomly selected candidates 10%

Percentage of randomly generated candidates 5%

Percentage of generated through recombination 30%

Population size 60

ANN Type Fully-meshed net

Activation function SIGMOID

Hidden nodes 2

Iterations 2

Mutation rate 20%

Random bias No

Variable mutation rate No

before starting the states. So far the learned controllers properly handled
their resources within the market. However, the complexity of the allocation
task is directly proportional to the amount of congestion, i.e., the number of
competing appliances. Moreover, local generation was managed by a single
entity. In the third scenario, the local generation unit is split into two smaller
generators, independently seeking profit maximization. On one hand this
complicates its coordination, and makes the allocation of multiple packages of
power to the same buyer more difficult. After evolving the controllers for 200
generations (see Fig. 6.9c), the generators can still properly sell their power
back to the grid. However, with exception of the fridge (200 W) the appliances
are not able to properly purchase power and prevent service interruption (see
Fig. 6.11) In particular, the dishwasher and the washing machines are visibly
being shifted over time (see Fig. 6.12). The selected settings produce suboptimal
results in scenarios with multiple small generators, which would require further
coordination to fully supply big loads. This is due to the independence of
consecutive trading days and the pure competitive setting created by the market
mechanism. The problem gets more accentuated in presence of congestion. In the
worst-case scenario loads with very similar preferences and high budget engage
in price wars which might ultimately yield service interruptions. The controllers
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Table 6.3: Properties of the market simulation

Property Value

Auction type UCDA

Allocation size 1 sec

Auction iterations 4

Simulation beginning 2013 01 01, 07:51

Simulation duration 3600 secs

Market price threshold 0.02 €
Market limit price 1.0 €
reward completed operation 1000

reward device start 100

reward state start 100

penalty device start delay 100

penalty grid use 5

penalty inflexible offers 100000

penalty state interruption 1000

penalty state start delay 1000

penalty unnecessary trading 10000

penalty unpowered controller 10000

penalty unstarted device 1000

penalty violation market rules 10

penalty violating price sensitivity 10

might be further improved by providing information of the trading tendency of
other loads, and better reflecting the “opportunity cost” for operating a load
into the fitness function. However, the issue is a peculiarity of the selected
market mechanism, which is sensitive to the statically-sized allocation interval.
Sizing the allocation interval presents the problem of internal and external
fragmentation of dynamic memory allocation [Sil08]. Similarly, the division of
a shared resource in fixed partitions limits the size of the process and thus the
degree of multiprogramming. A larger allocation interval can be used to suit
any existing load state, although this might often lead to internal fragmentation,
i.e., resource underuse. Contrarily, while smaller allocation intervals can allow
for timely reacting to system changes, this might cause service interruption. In
this section we used 1-second-based allocation intervals. This way the market
reallocates power at each trading cycle, which can result in service interruptions
with competing demand. To solve this problem, we investigate in the next
section on the possibility to learn a power broker able to sell dynamically-sized
provisioning durations.

81



6.3 Traders for energy markets 6 Automating energy management

0 20 40 60 80 100 120 140 160 180 200

−3
−2
−1

0
⋅106

Generation

F
it

n
es

s

(a) Fitness development for the first scenario

0 20 40 60 80 100 120 140 160 180 200
−3
−2
−1

0

⋅108

Generation

F
it

n
es

s

(b) Fitness development for the second scenario
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(c) Fitness development for the third scenario

Figure 6.9: Fitness development for the different scenarios
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(a) The “Power” tab

(b) Market price

(c) Use of local production

(d) Performance for a washing machine controller

(e) Performance for a light controller

Figure 6.10: Performance for a 1 hour simulation
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(a) Fridge operation

(b) Dishwasher operation

(c) Washing machine #1 operation

(d) Washing machine #2 operation

Figure 6.11: Controller performance in the third scenario

Figure 6.12: Service interruptions in the third scenario
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6.4 Forward contracting in Microgrids

6.4.1 Problem statement

Energy brokerage is the problem of formulating a price describing the cost
associated to the provisioning of currently available power.

In this part, we consider the power grid and the local generators as truth-
telling agents, whose reservation price is given by the grid-energy tariff and
the feed-in tariff, hereby represented as get and fit. For the broker, the cost to
supply the local grid at a generic time t is thus given by the power drawn from
the local generator and the one requested from the energy grid, as in Eq. 6.5.

p(Ps) = { fit if Ps ≤ Pre
Pre⋅fit+(Ps−Pre)⋅get

Ps
if Ps > Pre

(6.5)

where Ps = Pre + Pgrid. Fig. 6.13 shows a scenario with 3000 W provided by
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Figure 6.13: Cost function for different amounts of locally generated power Pre

the power grid, under a 0.05 €/kWh feed-in tariff and a 0.5 €/kWh grid
energy tariff. The price is computed for different levels of Pre. As visible,
higher amounts of Pre lowers the portion of Pgrid being used, with a consequent
lower price to supply the local grid. The broker is also required to minimize
service interruptions by providing multiple provisioning durations or service-
level agreements (SLA). Trading different durations as different products can
better reflect demand differences for the service agreements. For instance, with
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a majority of loads with long states this would imply higher costs to purchase
long-term service agreements, which would favour the purchase of short-term
contracts and the mitigation of fragmentation. The example shows three loads
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Figure 6.14: Providing multiple provisioning contracts

of same type, and consequently same demand (i.e., 50 W), competing for the
allocation of power at time t. At time t + 1 the running loads cause a 150 W
demand, while the remaining power is fed into the grid. As time passes and no
new allocations are matched, the service-level agreements are shifted to the left,
thus resulting in the situation showed in the second and third example. The
broker’s objective is to maximize the profit, indicated as difference between its
income and costs (i.e., to buy energy from the grid and the local generator).
This includes a profit ΠuGrid resulting from power sold throughout the microgrid,
as well as Πfeedin resulting from power injected back to the main power grid.
Similarly, we distinguish in a procurement cost Csupply and a compensation cost
Creimbursement. Agreements that can not be satisfied due to insufficient supply
are reimbursed. Specifically, the broker refunds involved loads with the supply
cost for the remaining portion of the SLA. The overall broker profit Π is thus
given as:

Π = (ΠuGrid +Πfeedin) − (Csupply +Creimbursement) (6.6)
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6.4.2 Performance measures

For a performance comparison of different brokerage schemes we have identified
the following metrics:

Peak-to-average ratio (PAR) is the ratio between the peak power and the
average over the considered time window. The PAR indicates the propor-
tion of power peaks over the overall demand and directly affects the loss
of load probability. It is desirable to keep this value as low as possible,
as higher PAR values denote a lower system reliability and consequently
inefficiency [Liu14].

Service availability defined as the proportion of time in which a system is in
a working condition. For clarity we distinguish in two more measures: the
Mean Time Between Failures (MTBF) which models the average uptime
between consecutive failures, and the Mean Time To Recover (MTTR)
describing the average downtime due to a service recovery. The MTBF is
directly related to the failure rate (i.e, the frequency of service interruption)
as λ = 1

MTBF . The availability is computed as A = MTBF
MTBF+MTTR , while the

unavailability is U = 1 −A = MTTR
MTBF+MTTR .

System reactivity which describes the degree of responsiveness. In the con-
text of energy management this can be defined for a load as the probability
of having enough power to operate. We can distinguish in: i) CBP number
of times the load could make an offer to get enough power and ii) CNBP
number of times the load could not make an offer to get enough power.
These values can be collected for each load once for each trading day.
Consequently, we can compute R = CBP

CBP+CNBP . Clearly, the presence of
longer service agreements increases the proportion of CNBP with respect
to CBP , thus lowering R.

Economic profit (Π) The profit in economical terms is computed as difference
between retail revenues and production costs. This is directly proportional
to market power, the ability to raise the price of a good or service over its
marginal cost. Market power is high in monopolies and oligopolies, and
absent in perfectly competitive markets. Because the broker operates in a
pure mopoly, by pricing available power to steer the system, the economic
profit is a good quality measure of its performance.

6.4.3 Rule-based brokers

Given that costs are fixed by the get and fit plans, the broker seeks profit
maximization by reflecting future supply costs and expected demand into the
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retail price. Accordingly, it is possible to distinguish in two different strategies:
i) a pessimistic broker that charges SLAs proportionally to their duration, and
ii) an optimistic broker that keeps the same price for all SLA durations.

The pessimistic broker matches mostly single-unit SLAs (i.e., the shortest
available), which presents the problem of market competition and service
interruption previously encountered. The optimistic broker attributes same
uncertainty to all SLA durations. This can result in economic losses for the
broker. Moreover, it favours the sale of long-terms SLAs, which reduce market
competition and consequently the reactivity of the allocation mechanism.

The selected scenario is a small Austrian household with a pool of appliances
and a photovoltaic power generator of 3.3 kWp [Mon13c]. The production
depends on two different weather models (see Fig. 6.15): i) a clear-sky sunlight
intensity computed solely according to the sun position [P1̈4], and ii) a 15-
minute-resolution illuminance timeserie collected from a weather station at the
University of Klagenfurt8, Austria. Due to the lack of digital meters, the current
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Figure 6.15: Sunlight intensity from the employed models

Austrian energy system does not implement time-based tariffs. Consequently,
we assumed a pricing scheme similar to the Italian one. Accordingly, the energy
exchanged with the main power grid get was set to 0.29 €/kWh in the interval
6 a.m. to 9 p.m and 0.15 €/kWh otherwise. The feed-in tariff fit is 0.04
€/kWh from 6 a.m. to 9 p.m. and 0.02 €/kWh otherwise. Consumption
data of building 2 in the first week of 2015 (i.e., Jan 1st to 7th) is taken from

8http://wetter-cms.aau.at/info.php
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[Mon14a] to model the usage behavior of a retired couple with an adult son. The
following devices were selected: television, washing machine, dishwasher, tumble
dryer and coffee machine. A low-pass filter was applied to the measurements
and edge-detection techniques were employed to identify device starting events.
Fig. 6.16 shows events being detected for January 1st, 2015. As visible in
Fig. 6.16c the following edges were detected: for device #0 at 01 ∶ 23 ∶ 53, for #7
at 07 ∶ 39 ∶ 18, for #7 at 08 ∶ 16 ∶ 39, for #0 at 11 ∶ 59 ∶ 09, for #0 at 13 ∶ 46 ∶ 16,
for #0 at 16 ∶ 07 ∶ 55 and for #4 at 16 ∶ 25 ∶ 11. Finally, load operation was
described as a sequence of states (Table 6.4) accompanied by an external usage
timeserie. For simplicity, a fridge was modeled as an an additional periodic
device with ω∗ = 0.8 and λ = 0.5. All models were implemented in the previously

Table 6.4: Simulation scenario

Operation model (P [kW ], d[sec])
TV (0.18,3600)
Dishwasher (2.1,300), (0.1,120), (0.3,60), (0.1,120), (2.1,300)
Dryer (2.5,120)10
W.machine (2.1,120), (0.3,300), (0.2,120), (0.6,300), (0.2,60)
Fridge (0.2,30), (0.16,600)
Coffee m. (2,60)

presented HEMS framework. The market-based allocation was disabled by
setting the price sensitivity of all loads to 0.9 €/kWh. Selected provisioning
durations are: a unitary agreement occupying 1 time instant, and respectively
10, 30, 60, 120, 600 and 1800 seconds. In the experiment the amount of Pgrid

available to the broker is varied: i) 0 kW, ii) 1.5 kW, iii) 3 kW in 6 a.m. to 6
p.m. and 1 kW otherwise, iv) 3 kW and v) 6 kW.

As visibile in Fig. 6.17, lowering Pgrid causes the postponement of loads
to off-peak periods. While this reduces the peak power demand, this also
decreases the average power demand, thus leading to the PAR reported. The
postponement of devices is not directly reflected on A, as this captures only the
performance of operating loads. For instance, the fridge and the entertainment
system are the only operating loads in the first scenario. Hence, lowering Pgrid

has the effect of preventing the operation of certain high-power demanding loads,
which results in a lower profit ΠuGrid. Moreover, it is remarkable that availability
and reliability are two opposite objectives to be optimized. Specifically, with
a low Pgrid the sale of long-term provisioning agreements results in resource
monopolization (i.e., R ≃ 0). The absence of a connection to the main power
grid, as in the first scenario, makes the system more sensitive to variations of
Pre. The broker reimburses involved loads with the supply cost of the remaining
portion of the SLA. The very low values are due to the pricing of the SLA,
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(b) Data after the preprocessing stage
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Figure 6.16: Usage behavior of January 1st 2015 for the selected household
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Figure 6.17: Evaluation metrics for 100 evaluations

which in absence of Pgrid is charged under the fit tariff (see Eq. 6.5). As visible
from the overall profit and income values, this issue gets even more accentuated
with more realistic weather models (i.e., W1). The weather stochasticity is
reflected on the produced power, which causes higher reimbursement and supply
costs to fulfill the SLAs. This demands approaches able to dynamically tune
the amount of sellable provisioning agreements.

6.4.4 Learning contract brokers

The broker’s objective is the maximization of economic profit and the mini-
mization of reimbursement costs. To this end, we employ an artificial neural
network, trained using evolutionary algorithms according to the fitness func-
tion in Eq. 6.6. Given the predefined fit and get price models, the broker
can seek profit maximization by modeling the expectation of future resource
availability. We therefore further penalize the reimbursement cost Creimbursement

by multiplying it to a reimbursement penalty δr. The broker’s input layer
includes Pre, fit, Pgrid and get, whereas the output layer consists of a price
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Figure 6.18: Profit components for 100 evaluations

for each provisioning duration: i.e., the unitary agreement and SLAs lasting
respectively 10, 30, 60, 120, 600 and 1800 seconds. The first design choice
concerns the selection of an input interface, which is related to weather con-
ditions. In particular, for photovoltaics this is related to sunlight availability
and air and cell temperature. A possibility to model seasonal patterns is thus
to use: i) an input for the hour of the day and ii) one for the day of the year
(Fig. 6.19a). This can be modeled using gaussian or sinusoidal functions, in
order to reflect the higher availability of light in the central part of the day.
Accordingly, for the ANN in Fig. 6.19a we used sin(π ⋅ t

tmax
), with t used to

indicate either the hour of the day or the day of the year. Another possibility
is to directly use the sunlight intensity as an input to the broker (Fig. 6.19b).
This can represent the expected light given the season and hour of the day,
or the measured sunlight intensity (see Fig. 6.15). Therefore, the effect of
different sensory input interfaces is an aspect that requires further evalutation.
While artificial neural networks are universal function approximators, their
ability to learn a function is in fact greatly affected by their topology. The
number of neurons in the hidden layer affects the ability to generalize their
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(b) Sunlight intensity input

Figure 6.19: Proposed ANN interfaces

experience, leading to overfitting when using fewer neurons and underfitting
when using too many. The optimal number of hidden neurons depends on
the complexity of the function to be approximated, and, therefore, indirectly
on the number of input and output nodes [Zhe15]. There exist empirically
derived rules-of-thumb for selecting the number of hidden neurons providing
a range of possible configurations [Blu92, Swi96, Ber97, Bog97, Cau92]. In
this work we selected the number of hidden neurons based on a experiments
within the suggested range of 2,3, and 4 neurons, where 2 neurons showed best
behavior. In addition, we applied two different representations: three-layered
ANNs and fully connected ANNs. This allows for the assessment of both simple
feedforward and more expressive recurrent structures. In particular, [Sie91]
showed a RNN with sigmoidal activation function being Turing complete. In a
fully-connected ANN each neuron is connected to itself and any other neuron,
which allows for retaining a state or context, although this complicates their
learning [Pas13]. Such an ability to model temporal dependencies makes RNNs
especially effective for processing sequential input [Lip15]. In this study, we used
both a linear and sigmoid activation function, respectively for the fully-meshed
and the three-layered version.

Training the proposed brokers

For each of the scenarios used to assess the rule-based brokers, a neural network
was trained using the NNGA evolutionary algorithm, with the parameters
reported in Table 6.5. The settings include: ideal and real weather conditions,
different season and different grid provisioning plan.

In particular, the networks were trained on a day-long simulation data
(see Fig. 6.15) at 1 Hz resolution. We initially planned the training to 800
generations. However, since we noticed stabilization of the fitness already before
500 generations we shortened the simulation for time issues. The reimbursement
cost Creimbursement is further penalized by a reimbursement penalty δr which we

93



6.4 Forward contracting in Microgrids 6 Automating energy management

empirically set to 100000.

Table 6.5: Parameters of the evolutionary algorithm

Population size 50

Number of generations 500

Elite selection rate [%] 15

Mutation rate [%] 40

Crossover rate [%] 30

Random-creation rate [%] 5

Random-selection rate [%] 10

Results

In the first experiment, we assess the fitness landscape over different scenarios,
namely: i) different grid energy provisioning plans and ii) different season and
weather conditions. Fig. 6.20 shows the fitness landscape for the proposed model
over the winter (Fig. 6.20a) and summer season (Fig. 6.20b). Differences in the
availability of both renewable and grid-supplied energy determine different fitness
for the broker. To compare the brokers against their rule-based counterpart, we
used the selected performance measures. For each scenario, the best candidate
network (i.e., in the last generation) is selected and used over respectively 1
day and 1 week time. Moreover, the brokers were placed in both ideal and
real weather conditions (i.e., as in their simulation enviroment). Fig. 6.21 and
6.22 show the main performance metrics, from which we omit the legenda for a
better clarity. For each grid plan, the points on the left and on the right to the
label represent respectively results for the winter and the summer season. The
symbols correspond to: i) ideal weather for 1 day (circle), ii) ideal weather for 1
week (star), iii) real weather for 1 day (plus) and iv) real weather for 1 week
(triangle). Similarly to the rule-based brokers, higher amount of power resulting
from the main grid or renewable sources allows for higher market volume and
consequently profit. In Fig. 6.21a, the high PAR for the Plan0 is due to the
absence of Pgrid, which makes not possible the operation of certain loads and
results in Pmax = 2kW and Pavg = 10W . Similar differences are encountered
for the summer weather as opposed to the winter weather, as well as the ideal
weather with respect to the actual weather. A further remark is that the brokers
correctly learned to minimize the reimbursement costs, as compared to their
rule-based counterparts (see Fig. 6.24b).

To observe behavioral differences in the different scenarios we report in
Table 6.6 the number of sold provisioning durations, respectively for 1 day
and 7 days long simulation. The first part lists the results for the winter
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weather, whilst the second for the summer season. Given the aggressive trading
attitude of the designed loads (i.e., independent from their price sensitivity), the
brokers’ pricing mechanism has more evident effects in the resource constrained
settings, as in Plan0 and Plan1. Therein the effects of real weather conditions
significantly affect the global power availability, which makes shorter SLAs
favorite. Contrarily, in other provisioning plans even with very stochastic
weather the power supplied by the main grid is normally enough to back the
loads. Effects can therefore be observed on an economical basis, with the
broker increasing the price for the resource proportionally to the grid energy
tariff. Consequently, the pricing of SLAs depends strictly on the expectation of
future demand. By setting the price sensitivity to 0.9 (€ / kWh) we simulated
the worst possible congestion scenario, in which depending on the employed
usage model all loads desire to operate regardless of the SLA pricing. In fact,
users will assign different price sensitivity models to the loads, according to
the delivered utility. This has the favourable effect of determining an ordering
over the loads, and consequently more favourable conditions for the broker and
the resulting SLA prices. The following simulation study employs the second
proposed model, of which Fig. 6.25 reports the fitness landscape. In particular,
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Figure 6.20: Fitness landscape for the ANNA 3LN
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Figure 6.21: Evaluation metrics for the ANNA 3LN

the sunlight intensity input provided to the ANNB is the one measured in the
area of Klagenfurt (Austria) (See Fig. 6.15).

Fig. 6.27 report the evaluation metrcis for the ANNB, while Fig. 6.28 and
6.29 shows the economic profit and its components.

We now report the result of the trained brokers, using a fully-meshed neural
network architecture. Fig.6.30 and 6.35 show the fitness for the fully-meshed
version of the ANNA and ANNB. As visible, the Fully-Meshed Network (FMN)
variants seem to lead to worse fitness values than their Three-Layered Network
(3LN) counterparts.
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Figure 6.22: Evaluation metrics for the ANNA 3LN
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Figure 6.23: Profit components for the ANNA 3LN
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Figure 6.24: Profit components for the ANNA 3LN
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Table 6.6: Traded service-level agreements

Plan Weather SLA duration

0 10 30 60 120 600 1800

0
Ideal 0/0 0/0 8/51 1/24 0/98 8/89 0/3

Real 0/0 0/1 5/41 0/3 0/5 11/55 2/5

1
Ideal 0/0 0/0 14/156 2/34 0/104 38/290 0/0

Real 0/0 0/0 21/152 1/23 0/64 45/276 0/0

2
Ideal 0/0 0/0 21/144 3/43 2/106 47/280 0/0

Real 0/0 0/0 21/137 3/43 2/106 47/273 0/0

3
Ideal 0/0 0/0 21/159 3/43 2/108 47/297 0/0

Real 0/0 0/0 21/159 3/43 2/108 47/297 0/0

4
Ideal 0/0 0/0 21/157 3/43 2/108 47/295 0/0

Real 0/0 0/0 21/157 3/43 2/108 47/295 0/0

0
Ideal 0/0 0/0 15/99 6/42 16/66 27/246 0/0

Real 0/0 0/1 15/72 2/22 2/53 23/202 0/0

1
Ideal 0/0 0/0 22/158 6/42 16/66 28/184 0/0

Real 0/0 0/1 21/145 6/36 18/70 27/170 0/0

2
Ideal 0/0 0/0 19/139 6/42 16/66 25/171 2/18

Real 0/0 0/0 21/156 6/42 16/66 27/200 0/6

3
Ideal 0/0 0/0 20/150 6/42 16/66 38/296 0/0

Real 0/0 0/0 21/152 6/42 16/66 39/298 0/0

4
Ideal 0/0 0/0 20/150 6/42 16/66 38/296 0/0

Real 0/0 0/0 20/150 6/42 16/66 38/296 0/0
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(b) Training on the summer day

Figure 6.25: Fitness landscape for the ANNB 3LN
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Figure 6.26: Evaluation metrics for the ANNB 3LN

102



6 Automating energy management 6.4 Forward contracting in Microgrids

Plan0 Plan1 Plan2 Plan3 Plan4
0.0

0.2

0.4

0.6

0.8

1.0

(a) System reactivity for different Pgrid scenarios

Plan0 Plan1 Plan2 Plan3 Plan4
0

5

10

15

20

25

30

(b) Broker’s profit for different Pgrid scenarios

Figure 6.27: Evaluation metrics for the ANNB 3LN
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Figure 6.28: Profit components the ANNB 3LN
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Figure 6.29: Profit components the ANNB 3LN
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Figure 6.30: Fitness landscape for the ANNA FMN
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Figure 6.31: Evaluation metrics for the ANNA FMN
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Figure 6.32: Evaluation metrics for the ANNA FMN
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Figure 6.33: Profit components for the ANNA FMN
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Figure 6.34: Profit components for the ANNA FMN
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Figure 6.35: Fitness landscape for the ANNA FMN
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Figure 6.36: Evaluation metrics for the ANNB FMN
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Figure 6.37: Evaluation metrics for the ANNB FMN
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Figure 6.39: Profit components for the ANNB FMN
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Discussion

Results show the brokers effectively minimizing the reimbursement costs. By
setting the price sensitivity to 0.9 (€ / kWh) we simulated the worst possible
congestion scenario, in which depending on the employed usage model all loads
desire to operate regardless of the SLA pricing.

Due to the designed trading attitude, loads seek operation regardless of their
price sensitivity. The formulated prices have more evident effect in resource-
constrained setups, such as Plan0 and Plan1. Accordingly, weather conditions
determine the overall power availability, which makes shorter SLAs favourite.
In presence of grid power connections, the stochastic nature of the weather is
backed by the power provided by the main grid. This leads to higher supply
costs, given the higher proportion of Pgrid employed.

In actual scenarios, users would assign different price sensitivity to the loads,
depending on the delivered utility. This has the favourable effect of determining
an ordering over the loads, and consequently more favourable conditions for the
broker and the resulting SLA prices.

6.5 Summary

This chapter dealt with the problem of automating energy management, by
delegating software agents for the control of electrical loads. A smart microgrid is
initially formalized in Sect. 6.1 and later implemented as a simulation framework
(Sect. 6.2). The framework was used in Sect. 6.3 to show the possibility of
learning controllers for smart prosumers, i.e., agents that embedd both a
production and a generation module. While the tool can be used for real-world
applications, a drawback of this approach is the size selected for the allocation
interval. To solve this issue, we investigated in Sect. 6.4 on the possibility of
learning a power broker, able to price power provisioning depending on the
duration of service agreements.
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CHAPTER

7
Conclusions

”Prediction is very difficult, especially about the future”

– Niels Bohr

In this chapter, we recap the provided contribution and discuss limitations that
deserve further investigation in future. We further list published work related
to the topic of this dissertation. We conclude the chapter with a list of open
questions for future work.

7.1 Contributions

The main objective of the research presented in this dissertation is to address
the problem of energy management in microgrids. In particular, we desire
assisting users towards a more conscious and efficient use of local renewable
sources, which being highly dependent on weather increase significantly the
complexity for their management. To this end we have contributed with the
following tools:

The GREEND dataset which we released to the public, contains more than
1 year power consumption data in selected household in Italy and Austria.
The dataset was used in several intelligent energy applications such as
load disaggregation and appliance usage modeling.

Ontology for integration of legacy and smart devices can be used to
annotate information related to the functioning of electrical loads. The
ontology allows for the seamless integration of smart and legacy devices,
and opens to the use of other semantic web technologies, such as SPARQL
for querying.
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Mjölnir - the open energy advisor features state-of-the-art processing al-
gorithms acting on production and consumption data, on both aggregated
and disaggregated level. The tool can benefit both human-computer
interaction scientists, as well as thinkerers and open-source enthusiasts.

The HEMS simulator framework to train energy prosumers, such as re-
newable energy generators, appliances, as well as batteries. The model
proposed in this study is general and can be applied in any trading setup.
The simulator can be used as a testbed for assessing different demand-
response policies, as well as to automatically learn controllers that could
be then run on physical devices.

The Smart-Microgrid broker serves as proof of concept towards the appli-
cation of forward contracts for power trading in smart microgrids. We
identified important metrics for the evaluation of power brokers and de-
signed both basic rule-based and model-based ones. The model is general
and can be further extended to other network architectures, e.g. deep
networks and NEAT [Sta02]. The broker can be easily integrated in
existing energy management tools, where it can assist users by displaying
expected energy prices.

7.2 Limitations

Because of the selected techniques we also face multiple limitations:

• This dissertation focused on residential environments, by gaining insights
from real households being monitored through surveys and a measurement
campaign. Specifically, the GREEND offers insights into residential energy
consumption. To tackle public and industrial settings different datasets
are necessary.

• The proposed architecture allows for the full integration of smart and
legacy devices, and ultimately for device and data interoperability. How-
ever, the released proof of concept serves only to demonstrate the possibil-
ity to describe and query device information. In particular, the selected
RDFLib can rely on relational or file-based databases to store handled
triples. Generally this means using a table with three columns (i.e., sub-
ject, predicate and object), which has clear scalability limitations for both
storage and interrogation.

• The policies automatically generated by the advisor widget were estimated
leading up to 34% of savings. This was calculated by adding up the indi-
vidual contribution of each advice. This represents the optimal case in
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which users are exposed to all policies and decide to actuate them. In addi-
tion, the GREEND dataset provides a limited number of setups targeting
the peculiarities of Austrian and Italian households. Thus, the reported
findings do not have statistical significance and the actual effectiveness of
the advisor is yet to be assessed through large-scale deployments.

• The designed prosumer controllers were trained in specific scenarios. Our
study still lacks a comparison of possible controllers, as this would be
dependent on the used dataset.

• The designed broker adapts to the given simulation environment, and
thus, results are hardly generalizable. However, the main contribution is
the used methodology, which can be generalized to other setups.

7.3 Related publications

During the course of this study various publications have been presented to
the research community (see B.3). This dissertation includes material from the
following papers:

• Strategies for Domestic Energy Conservation in Carinthia and
Friuli-Venezia Giulia [Mon13c] Households account for a significant
fraction of overall energy consumption. Energy usage can be reduced by
improving the efficiency of devices and optimizing their use as well as by
encouraging people to change their behaviour towards a more sustainable
lifestyle. In this study, we investigate patterns of domestic energy use in
Carinthia (Austria) and Friuli-Venezia Giulia (Italy). In particular, we
report the results of an online survey about electrical devices and their
use in households. We outline typical scenarios in the two regions and
discuss possible strategies to reduce the consumption of energy in these
regions.

• GREEND: an energy consumption dataset of households in Italy
and Austria [Mon14a] Home energy management systems can be used to
monitor and optimize consumption and local production from renewable
energy. To assess solutions before their deployment, researchers and de-
signers of those systems demand for energy consumption datasets. In this
paper, we present the GREEND dataset, containing detailed power usage
information obtained through a measurement campaign in households in
Austria and Italy. We provide a description of consumption scenarios and
discuss design choices for the sensing infrastructure. Finally, we bench-
mark the dataset with state-of-the-art techniques in load disaggregation,
occupancy detection and appliance usage mining.
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• Integrating Households into the Smart Grid [Mon13a] The success
of the Smart Grid depends on its ability to collect data from heteroge-
neous sources such as smart meters and smart appliances, as well as the
utilization of this information to forecast energy demand and to provide
value-added services to users. In our analysis, we discuss requirements for
collecting and integrating household data within smart grid applications.
We put forward a potential system architecture and report state-of-the-art
technologies that can be deployed towards this vision.

• Integration of Legacy Appliances into Home Energy Manage-
ment Systems [Ega15a] The progressive installation of renewable energy
sources requires the coordination of energy consuming devices. At con-
sumer level, this coordination can be done by a home energy management
system (HEMS). Interoperability issues need to be solved among smart
appliances as well as between smart and non-smart, i.e., legacy devices.
We expect current standardization efforts to soon provide technologies to
design smart appliances in order to cope with the current interoperability
issues. Nevertheless, common electrical devices affect energy consumption
significantly and therefore deserve consideration within energy manage-
ment applications. This paper discusses the integration of smart and
legacy devices into a generic system architecture and, subsequently, elab-
orates the requirements and components which are necessary to realize
such an architecture including an application of load detection for the
identification of running loads and their integration into existing HEM
systems. We assess the feasibility of such an approach with a case study
based on a measurement campaign on real households. We show how the
information of detected appliances can be extracted in order to create
device profiles allowing for their integration and management within a
HEMS.

• An Open Solution to Provide Personalized Feedback for Build-
ing Energy Management [Mon15] The integration of renewable energy
sources increases the complexity in mantaining the power grid. In particu-
lar, the highly dynamic nature of generation and consumption demands for
a better utilization of energy resources, which seen the cost of storage in-
frastructure, can only be achieved through demand-response. Accordingly,
the availability of energy and potential overload situations can be reflected
using a price signal. The effectiveness of this mechanism arises from the
flexibility of device operation, which is nevertheless heavily reliant on the
exchange of information between the grid and its consumers. In this paper,
we investigate the capability of an interactive energy management system
to timely inform users on energy usage, in order to promote an optimal use
of local resources. In particular, we analyze data being collected in several
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households in Italy and Austria to gain insights into usage behavior and
drive the design of more effective systems. The outcome is the formulation
of energy efficiency policies for residential buildings, as well as the design of
an energy management system, consisting of hardware measurement units
and a management software. The Mjölnir framework, which we release
for open use, provides a platform where various feedback concepts can be
implemented and assessed. This includes widgets displaying disaggregated
and aggregated consumption information, as well as daily production and
tailored advices. The formulated policies were implemented as an advisor
widget able to autonomously analyze usage and provide tailored energy
feedback. The advisor is estimated leading to a potential of 34% of savings
using measurement data from the GREEND dataset.

• HEMS - A Home Energy Market Simulator [Mon14c] Stability
issues in the electric power grid originate from the rising of renewable
energy generation and the increasing number of electric vehicles. The
uncertainty and the distributed nature of generation and consumption
demand for optimal allocation of energy resources, which, in the absence
of sufficient control reserve for power generation, can be achieved using
demand-response. A price signal can be exploited to reflect the availability
of energy. In this paper, market-based energy allocation solutions for
small energy grids are discussed and implemented in a simulator, which
is released for open use. Artificial neural network controllers for energy
prosumers can be designed to minimize individual and overall running
costs. This enables a better use of local energy production from renewable
sources, while considering residents’ necessities to minimize discomfort.

• Assisted energy management in Smart Microgrids [Mon16] De-
mand response provides utilities with a mechanism to share with end users
the stochasticity resulting from the use of renewable sources. Pricing is
accordingly used to reflect energy availability, to allocate such a limited
resource to those loads that value it most. However, the strictly competi-
tive mechanism can result in service interruption in presence of competing
demand. To solve this issue we investigate on the use of forward contracts,
i.e., service-level agreements priced to reflect the expectation of future
supply and demand curves. Given the limited resources of microgrids,
service availability is an opposite objective to the one of system reactivity.
We firstly design policy-based brokers and identify then a learning broker
based on artificial neural networks. We show the latter being progressively
minimizing the reimbursement costs and maximizing the overall profit.
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7.4 Future work

• To achieve seamless integration of smart and legacy devices further work
is necessary on the proposed architecture. This includes the integration
of external load disaggregation libraries and frameworks, such as the
NILM toolkit (NILMTK). Another relevant aspect to be considered is
the scalability of the triple store used to handle the semantic network. A
possibility is to rely on distributed database management systems, such
as Apache Cassandra1 and Hadoop HBase2.

• In Mjölnir we foresee various developments. A better integration of
available occupancy models and appliance usage models with external
tools, such as the if-this-then-that (IFTTT3) service, would allow users for
benefit of other smart-home applications. Moreover, a better integration
with social networking sites would allow for new social features, such as
comparisons with “friends” and follower-like lists, to be used for compelling
goal-setting widgets. For instance, this might include competitions at
microgrid or regional level, where performance of rooms and buildings
would contribute to the neighborhood performance in a sort of crowd
sensing tool (e.g., smartroadsense4). It is also important to remark that
today’s installations take place mostly in residential environments. Since
the motivation of users in different settings is not clear, a deeper evaluation
of potential of feedback systems in public buildings should thus be carried
out in future. Specific widgets will thus be necessary, especially given that
public displays provide different interaction modalities and resolution.

• To actually benefit of the possibility of automatically design controllers
for energy prosumers, the HEMS Simulator should be further extended
with the possibility of exporting learned controllers. An investigation
of existing formats should be undertaken. Moreover, assessing the gap
between simulated and physical setting is critical challenge for the effective
operation.

• A comparison of possible structures for the broker should be carried out.
This includes neuroevolution of augmenting topologies (i.e., NEAT [Sta02]
and HyperNEAT [Sta09]) as well as the employment of deep architectures
and different activation functions. In addition, further research is necessary
towards the integration of the designed microgrid broker into energy
management systems.

1http://cassandra.apache.org/
2http://hbase.apache.org/
3http://ifttt.com
4http://smartroadsense.it
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CHAPTER

A
Acceptance of the advisor
widget

This section lists the questions used for the satisfaction questionnaire and the
answers collected.

1. It takes short time to learn the meanings of the buttons

2. The position of the buttons is logical

3. I understand what happens when I click the buttons

4. The advices are unusual, inventive, original

5. The advices are useful to improve energy efficiency

6. The advices are doable

7. I can learn something from the advices

8. I would use this widget every day

9. I would use this widget again
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A Acceptance of the advisor widget

Table A.1: Answers to the satisfaction questionnaire
r1 r2 r3 r4 r5 r6 r7

q1 1 0 1 1 1 1 0

q2 1 0 2 1 1 0 1

q3 2 1 1 0 1 2 1

q4 0 1 0 0 -1 1 -1

q5 1 2 1 1 2 1 0

q6 0 1 0 -1 0 -1 0

q7 0 1 1 0 1 -1 1

q8 -1 -1 -2 -2 -1 -2 -2

q9 2 1 1 -1 0 1 0
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CHAPTER

B
Scenarios used for train-
ing appliance controllers

B.1 Scenario 1: learning to sell energy

In this scenario, a controller is learned for a photovoltaic generator having peak
power of 4kW and located in the area of Klagenfurt (Austria) (List. B.1).
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Listing B.1: First scenario
1 {"weather":{"type":"time -intervals",
2 "intervals":[{"start":[12,21,0,0,0],"end":[3,21,0,0,0], "cloud -factor":0.6},
3 {"start":[3,21,0,0,0],"end":[6,21,0,0,0], "cloud -factor":0.4},
4 {"start":[6,21,0,0,0],"end":[9,21,0,0,0], "cloud -factor":0.2},
5 {"start":[9,21,0,0,0],"end":[12,21,0,0,0], "cloud -factor":0.9}]},
6 "grid_connections":[{"name":"Grid_connection_1", "credit":10.0,

7 "price -model": {"tariff": {"type": "time -intervals",

8 "intervals" : [{"name":"day", "start":[6,0], "end":[20,0], "cost":0.50},
9 {"name":"night", "start":[20,0], "end":[6,0], "cost":0.30}]},

10 "feed -in":{"type": "time -intervals",

11 "intervals" : [{"name":"day", "start":[6,0], "end":[20,0], "cost":0.20},
12 {"name":"night", "start":[20,0], "end":[6,0], "cost":0.05}]} },
13 "capability -model":{"power -availability": {"type": "time -intervals", "intervals" : [{"start":[0,0], "end":[23,59], "amount":600}] }

,

14 "power -capability": {"type" : "time -intervals", "intervals" : [{"start":[0,0], "end":[23,59], "amount":3000}] }
}

15 }],
16 "producers":[{"name":"Photovoltaic_house_1", "idle":0, "price -model":0.1,

17 "type":"MODELED -PV", "payload":{"peakPower":4000.0, "efficiency":0.15, "latitude":46.6, "longitude":14.4, "height":0.446, "size":50.0}} ],

18 "loads":[]

19 }
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B HEMS Scenarios B.2 Scenario 2

B.2 Scenario 2: learning a prosumer able to

buy and sell energy

In this scenario, a pool of loads is added to assess the possibility to buy power
depending on the provided synthetic usage models (List. B.2).
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Listing B.2: Second scenario
1 {
2 "weather":{"type":"time -intervals",
3 "intervals": [{"start":[12,21,0,0,0],"end":[3,21,0,0,0], "cloud -factor":0.6},
4 {"start":[3,21,0,0,0],"end":[6,21,0,0,0], "cloud -factor":0.4},
5 {"start":[6,21,0,0,0],"end":[9,21,0,0,0], "cloud -factor":0.2},
6 {"start":[9,21,0,0,0],"end":[12,21,0,0,0], "cloud -factor":0.9}]},
7 "grid_connections":[ {"name":"Grid_connection_1", "credit":10.0,

8 "price -model": {"tariff": {"type": "time -intervals",

9 "intervals" : [{"name":"day", "start":[6,0], "end":[20,0], "cost":0.50},
10 {"name":"night", "start":[20,0], "end":[6,0], "cost":0.30}]},
11 "feed -in":{"type": "time -intervals",

12 "intervals" : [{"name":"day", "start":[6,0], "end":[20,0], "cost":0.20},
13 {"name":"night", "start":[20,0], "end":[6,0], "cost":0.05}]}},
14 "capability -model": {"power -availability": {"type": "time -intervals", "intervals" : [{"start":[0,0], "end":[23,59], "amount":3000}

]},
15 "power -capability": {"type" : "time -intervals", "intervals" : [{"start":[0,0], "end":[23,59], "amount":3000}]

}}
16 }],
17 "producers":[ {"name":"Photovoltaic_house_1", "idle":0, "price -model":0.15,

18 "type":"MODELED -PV", "payload":{"peakPower":4000.0, "efficiency":0.15, "latitude":46.6, "longitude":14.4, "height":0.446, "size":200.0}}]
,

19 "loads":[

20 {"name":"Dishwasher", "credit":10.0, "idle":0, "offer_expiration":3600, "type":"RANDOM", "deferrable":true,

21 "payload":{"power":[[800,5,60],[200,5,10],[400,600,2],[600,120,10],[200,5,10]],
22 "willingness":0.6, "willingness_decay":0.6, "sensitivity":0.25}},
23 {"name":"Fridge", "credit":10.0, "idle":0, "offer_expiration":3600, "type":"RANDOM", "deferrable":true,

24 "payload":{"power":[[200,5,60]],
25 "willingness":0.8, "willingness_decay":0.1, "sensitivity":0.6}},
26 {"name":"Boiler", "credit":10.0, "idle":0, "offer_expiration":3600, "type":"RANDOM", "deferrable":true,

27 "payload":{"power":[[800,5,60],[800,5,10],[800,5,10],[800,5,10]],
28 "willingness":0.5, "willingness_decay":0.5, "sensitivity":0.3}},
29 {"name":"Washingmachine_1", "credit":10.0, "idle":0, "offer_expiration":3600, "type":"RANDOM", "deferrable":true,

30 "payload":{"power":[[800,120,60],[200,5,10],[400,10,2],[400,10,2],[400,10,2],[400,10,2],[400,10,2],[400,10,2],
31 [400,10,2],[400,10,2],[400,10,2],[400,10,2],[700,120,10],[200,2,10]],

32 "willingness":0.6, "willingness_decay":0.5, "sensitivity":0.4}},
33 {"name":"Washingmachine_2", "credit":10.0, "idle":0, "offer_expiration":3600, "type":"RANDOM", "deferrable":true,

34 "payload":{"power":[[800,120,60],[200,5,10],[400,10,2],[400,10,2],[400,10,2],[400,10,2],[400,10,2],[400,10,2],
35 [400,10,2],[400,10,2],[400,10,2],[400,10,2],[700,120,10],[200,2,10]],

36 "willingness":0.6, "willingness_decay":0.5, "sensitivity":0.5}},
37 {"name":"Light_bedroom", "credit":5.0, "idle":0, "offer_expiration":3600, "type":"RANDOM", "deferrable":false,

38 "payload":{"power":[[60,120]],
39 "willingness":0.6, "willingness_decay":0.5}}
40 ]}
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B HEMS Scenarios B.3 Scenario 3

B.3 Scenario 3: multiple demand and frag-

mented local production

In this scenario, local generation is split in two different photovoltaic plants,
indipendently seeking profit maximization through their trade (List. B.3).
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Listing B.3: Third scenario
1 {
2 "weather":{"type":"time -intervals",
3 "intervals": [{"start":[12,21,0,0,0],"end":[3,21,0,0,0], "cloud -factor":0.6},
4 {"start":[3,21,0,0,0],"end":[6,21,0,0,0], "cloud -factor":0.4},
5 {"start":[6,21,0,0,0],"end":[9,21,0,0,0], "cloud -factor":0.2},
6 {"start":[9,21,0,0,0],"end":[12,21,0,0,0], "cloud -factor":0.9}]},
7 "grid_connections":[ {"name":"Grid_connection_1", "credit":10.0,

8 "price -model": {"tariff": {"type": "time -intervals",

9 "intervals": [{"name":"day", "start":[6,0], "end":[20,0], "cost":0.50},
10 {"name":"night", "start":[20,0], "end":[6,0], "cost":0.30}]},
11 "feed -in":{"type": "time -intervals",

12 "intervals":[{"name":"day", "start":[6,0], "end":[20,0], "cost":0.20},
13 {"name":"night", "start":[20,0], "end":[6,0], "cost":0.05}]}},
14 "capability -model": {"power -availability": {"type": "time -intervals", "intervals" : [{"start":[0,0], "end":[23,59], "amount":400}]

},
15 "power -capability": {"type" : "time -intervals", "intervals" : [{"start":[0,0], "end":[23,59], "amount":3000}]

}}
16 }],
17 "producers":[

18 {"name":"Photovoltaic_house_1", "idle":0, "price -model":0.1, "type":"MODELED -PV",

19 "payload":{"peakPower":1600.0, "efficiency":0.15, "latitude":46.6, "longitude":14.4, "height":0.446, "size":50.0}},
20 {"name":"Photovoltaic_house_2", "idle":0, "price -model":0.1, "type":"MODELED -PV",

21 "payload":{"peakPower":1600.0, "efficiency":0.15, "latitude":46.6, "longitude":14.4, "height":0.446, "size":50.0}}],
22 "loads":[

23 {"name":"Dishwasher", "credit":10.0, "idle":0, "offer_expiration":3600, "type":"RANDOM", "deferrable":true,

24 "payload":{"power":[[800,5,60],[200,5,10],[400,600,2],[600,120,10],[200,5,10]],
25 "willingness":0.6, "willingness_decay":0.6, "sensitivity":0.5}},
26 {"name":"Fridge", "credit":10.0, "idle":0, "offer_expiration":3600, "type":"RANDOM", "deferrable":true,

27 "payload":{"power":[[200,5,60]],
28 "willingness":0.8, "willingness_decay":0.1, "sensitivity":0.5}},
29 {"name":"Boiler", "credit":10.0, "idle":0, "offer_expiration":3600, "type":"RANDOM", "deferrable":true,

30 "payload":{"power":[[800,5,60],[800,5,10],[800,5,10],[800,5,10]],
31 "willingness":0.5, "willingness_decay":0.5, "sensitivity":0.3}},
32 {"name":"Washingmachine_1", "credit":10.0, "idle":0, "offer_expiration":3600, "type":"RANDOM", "deferrable":true,

33 "payload":{"power":[[800,120,60],[200,5,10],[400,10,2],[400,10,2],[400,10,2],[400,10,2],[400,10,2],
34 [400,10,2],[400,10,2],[400,10,2],[400,10,2],[400,10,2],[700,120,10],[200,2,10]],

35 "willingness":0.6, "willingness_decay":0.5, "sensitivity":0.5}},
36 {"name":"Washingmachine_2", "credit":10.0, "idle":0, "offer_expiration":3600, "type":"RANDOM", "deferrable":true,

37 "payload":{"power":[[800,120,60],[200,5,10],[400,10,2],[400,10,2],[400,10,2],[400,10,2],[400,10,2],
38 [400,10,2],[400,10,2],[400,10,2],[400,10,2],[400,10,2],[700,120,10],[200,2,10]],

39 "willingness":0.6, "willingness_decay":0.5, "sensitivity":0.5}},
40 {"name":"Light_bedroom", "credit":5.0, "idle":0, "offer_expiration":3600, "type":"RANDOM", "deferrable":false,

41 "payload":{"power":[[60,120]], "willingness":0.6, "willingness_decay":0.5}}
42 ]}
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